当前位置 —论文本科论文— 范文

关于物联网相关论文例文,与农业云大数据自组织推送关键技术综述相关论文下载

本论文是一篇关于物联网相关论文下载,关于农业云大数据自组织推送关键技术综述相关毕业论文参考文献格式范文。免费优秀的关于物联网及互联网及信息化方面论文范文资料,适合物联网论文写作的大学硕士及本科毕业论文开题报告范文和学术职称论文参考文献下载。

两大方面,一是直接利用传统协同过滤的评分数据结合特定的方法进行解决,二是新用户或新项目的内容属性信息与传统的协同过滤评分数据相结合的方法进行改善冷启动问题.稀疏性与冷启动问题一直是推荐系统研究的一个难点和重点.

2.4数据挖掘的结果和算法智能服务化

将数据挖掘算法融入针对海量用户的使用记录和计算资源间协作进行优化组合,利用这些特性通过大众参与的交互作用,提高云间服务的智能性、有效性将是大数据时代推荐系统研究的一个制高点.将数据挖掘任务及其实现算法服务化,通过SaaS方式向云计算中心索取所需的相应的数据挖掘,这可能是目前突破数据挖掘专用软件使用门槛过高、普通大众难以触及、企业用户使用成本太大、挖掘算法和结果难以实时得到评价和相应修改等问题的最有希望的解决方案之一,也是数据挖掘走向互联网大众、走向实用化的重要的一步.

2.5大数据处理与增量计算问题

目前对大数据的研究仍处于一个非常初步的阶段,半结构化和非结构化数据给传统的数据分析带来巨大挑战,尤其算法如何快速高效地处理推荐系统海量和稀疏的数据成为迫在眉睫的问题.当产生新的数据时,算法的结果不需要在整个数据集上重新进行计算,而只需考虑增量部分,对原有的结果进行微调,快速得到准确的新结果,是增量计算的理想状态.但一般而言,随着信息量的增多,算法的误差会累积变大,最终每过一段时间还是需要利用全局数据重新进行计算.一个特别困难的挑战是如何设计一种能够保证其误差不会累积的算法,也就是说其结果与利用全部数据重新计算的结果之间的差异不会单调上升,要达到这种程度,还有很长的路要走.

结束语:

随着新一代信息技术的快速发展和信息内容的日益增长,搭载在云计算平台的自组织区域推送具有它天然的优势:云的海量存储使得推荐系统能有效获取训练数据;云的分布式计算能力提供了较高的响应能力;海量用户的使用记录和计算资源问大众参与的交互涌现,最终形成自组织优化组合的智能个性化云推送.因此,农业云自组织区域推送具有重要的研究意义和广阔的应用前景,对云环境下其他领域的个性化推送应用具有借鉴意义,但目前存在大量问题需要进行深入细致的研究.

参考文献

[1]孟祥武,胡勋,王立才,张玉洁,移动推荐系统及其应用[J],软件学报,2013,24(1):91-108

[2]杨涛,基于本体的农业领域知识服务若干关键技术研究[D],上海:复旦大学计算机科学技术学院博士论文,2011,1-50

[3]杨晓蓉,分布式农业科技信息共享关键技术研究与应用[D],北京:中国农业科学院博士学位论文,2011,3-35

[4]赵春江,农业智能系统[M],北京:科学出版社,2009,1-210,

[5]何清,物联网与数据挖掘云服务[J],智能系统学报,2012,7(3):1-5,

[6]黄卫东,于瑞强,共享学习模式下知识服务云平台的构建研究[J],电信科学,2011,12:6-11

[7]丁静,杨善林,罗贺,丁帅,云计算环境下的数据挖掘服务模式[J],计算机科学,2012,39(6):217-219,237

[8]邓仲华,钱剑红,陆颖隽,国内图书情报领域云计算研究分析[J],信息资源管理学报,2012,2:10-16

[9]胡安瑞,张霖,陶飞,罗永亮,基于知识的云制造资源服务管理[J]同济大学学报(自然科学版),2012,40(7):1093-1101

[10]程功勋,刘丽兰,林智奇,俞涛,面向用户偏好的智能云服务平台研究[J],中国机械工程,2012,23(11):1318-1323,1336

[11]刘波,方逵,沈岳,可重构的农业知识服务模式研究[J]农机化研究,2011,36(11):66-70[12]赵星,廖桂平,史晓慧,陈诚,李文圃,物联网与云计算环境下的农业信息服务模式构建[J],农机化研究,2012,4:142-147

[13]郭永田,中国农业农村信息化发展成效与展望[J],电子政务,2012,02-03:99-106

[14]李道亮,中国农业农村信息化发展报告(2011)[M],北京:电子工业出版,2012,87-150

[15]钱平,郑业鲁,农业木体论研究与应用[M],北京:中国农业科学技术出版社,2006,1-100

[16]吴丽花,刘鲁,个性化推荐系统用户建模技术综述[J],情报学报,2006,25(2):55-62

[17]李珊,个性化服务中用户兴趣建模与更新研究[J],情报学报,2010,29(1):67-71

[18]王国霞,刘贺平,个性化推荐系统综述[J],计算机工程与应用,2012,48(7):66-76

[19]王巧容,赵海燕,曹健,个性化服务中的用户建模技术[J],小型微型计算机系统,2011,32(1):39-46

软件杂志欢迎推荐投稿:http://.csoft./

[20]张华清,动态多维社会网络中个性化推荐方法研究[D],济南:山东师范大学硕士学位论文,2012,16-31

[21]王丹丹,面向跨系统个性化服务的用户建模方法研究[J]_情报杂志,2012,31(6):156-161

[22]邓夏玮,基于社交网络的用户行为研究[D],北京:北京交通大学硕士学位论文,2012,4-43

[23]马尧,基于多维用户特征建模的个性化社交搜索引擎的设计与实现[D],广州:华南理工大学硕士学位论文,2012,12-55

[24]陈恩红,徐童,田继雷,杨禹,移动情景感知的个性化推荐技术[J],中国计算机学会通讯,2013,9(3):19-24

[25]JongHwaKima,b,,HyunJoonLeeb,Extractionofuserprofilebasedonworkflowandinformationflow[J],ExpertSystemswithApplications,2012,39(5):5478-5487

[26]南智敏,钱松荣,引入漂移特性的用户兴趣模型优化研究[J],微型电脑应用,2012,28(3):30-32

[27]郭新明,弋改珍,混合模型的用户兴趣漂移算法[J],智能系统学报,2010,5(2):181-184

[28]程显毅,朱倩,文本挖掘原理[M],北京:科学出版社,2010,9-45[29]李涛,推荐系统中若干关键问题研究[D],南京:南京航空航天大学博士学位论文,2009,31-80

[30]姜伦,模糊聚类算法及其在中文文本聚类中的研究与实现[D],哈尔滨:哈尔滨理工大学硕士学位论文,2010,18-48

[31]冯汝伟,谢强,丁秋林,基于文本聚类与分布式Lucene的知识检索[J],计算机应用,2013,33(1):186-188

[32]陶红,周永梅,高尚,一种基于语义相似度的群智能文本聚类的新方法[J]计算机应用研究,2012,29(2):482-532

[33]孟海东,刘小荣,基于聚类分析的图模型文档分类[J]计算机应用与软件,2012,29(1):117-174,229

[34]饶君,张仁波,东呈晓,吴斌,基于MapReduce的大规模图挖掘并行计算模型[J],应用科技,2012,39(3):56-60

[35]于戈,谷峪,鲍玉斌,王志刚,云计算环境下的大规模图数据处ĩ

1 2 3 4

关于物联网相关论文例文,与农业云大数据自组织推送关键技术综述相关论文下载参考文献资料:

本科毕论文

本科自考要求

日语本科毕业论文题目

交大自考本科

函授本科院校

一年成人本科

本科数学毕业论文题目

函授本科***

电大本科论文格式

自考本科需要多少钱

农业云大数据自组织推送关键技术综述(3)WORD版本 下载地址