当前位置 —论文教学— 范文

关于学科教学类论文范文例文,与基于PCK的高中数学教学设计相关毕业论文怎么写

本论文是一篇关于学科教学类毕业论文怎么写,关于基于PCK的高中数学教学设计相关毕业论文开题报告范文。免费优秀的关于学科教学及数列及高中数学教师方面论文范文资料,适合学科教学论文写作的大学硕士及本科毕业论文开题报告范文和学术职称论文参考文献下载。

1引言:PCK概念的内涵

这一概念最早由斯坦福大学教授Shulman(美国教育研究会主席)提出,他认为构成教学的知识基础有7类,其中的“学科教学知识”逐步成为教师知识的重心与核心.学科教学知识是“PedagogicalContentKnowledge”(简称为PCK)的翻译,也有些研究者将其翻译成“教学内容知识”或者“学科教育知识”.

2010年上海的中学生与全球47万名中学生共同参加国际学生评估项目(PISA)的调查,最终在阅读、数学和科学素养三方面的成绩均排名全球第一,震撼全球.相比于来自外国专家学者的赞许,以及本国专家学者的质疑和惊讶,国内的数学教育家们提出“反观我们自己的数学教学”.上海作为一个国际大都市,需要建成国际金融中心,学生的数学能力以及数学教师的教学能力将遇到更大的机会和挑战,基于数学教师的学科教学知识的教学设计研究意义重大.本文将在前人的理论指导下,结合PCK的相关理论,以《数列的极限》为例,探究高中教学设计的相关问题,期望对教学设计有更好的理解和改进.2实例:基于PCK的高中数学设计

在教学实践过程中,教龄越长,教师的数学知识越丰富,对数学知识点之间的关联更加清晰,对数学学科的理解和认识越深入.基于PCK的内涵和定义,本研究以《数列的极限》的教学内容为例,通过“内容分析”、“学情分析”、“教学方法及教学手段的选择”、“教学反思”等方面的研究,探究高中数学教学设计的内涵及改进策略.

2.1“数列的极限概念”内容分析

极限概念是学生认知的难点,同时也是教学的难点.对这一难点的产生原因,回顾国内外学者的讨论,结合理论分析我们认为:极限概念由直观到严谨的生成历史是漫长的,这说明概念本身具有高度抽象性;恰当的认知根源的寻找并不容易,这使学生在最初的概念学习时借助于各自的有限空间概念帮助建立了一些不正确的心理表征,而概念间错综复杂的关系更降低了数列极限概念的可认知性.

2.11数列极限概念定义的剖析

数列极限是由初等数学向高等数学过渡的关键内容,它是数学由具体到抽象、由有限到无限的桥梁,是微分学的基础.对于数列极限概念的理解,直接关系到学生今后学习高等数学的成败.极限概念难以理解掌握的原因在于:概念在教学的过程中涉及到“任意”、“给定”、“无限接近”、“存在”、“趋向”等较抽象的术语.概念的叙述繁长、符号很多,如:绝对值符号等,且它们之间的数量关系错综复杂,学生难以掌握,对绝对值的几何意义和解绝对值不等式不熟悉.

(1)定义的文本解读

上海教育出版社教材定义如下:

基于PCK的高中数学教学设计参考属性评定
有关论文范文主题研究: 关于学科教学的论文范本 大学生适用: 电大论文、学位论文
相关参考文献下载数量: 31 写作解决问题: 写作资料
毕业论文开题报告: 论文模板、论文结论 职称论文适用: 刊物发表、中级职称
所属大学生专业类别: 写作资料 论文题目推荐度: 经典题目

请同学们观察下列几个数列的变化趋势

(a)1[]10,1[]102,1[]103,等,1[]10n,等

(b)-1,1[]2,-1[]3,等,(-1)n[]n,等

(c)12,23,34,等,nn+1,等

归纳数列极限的描述性定义:一般地,如果当项数n无限增大时,数列{an}的项无限的趋近于某一个常数A,则称数列{an}以A为极限,记作limn→∞an等于A.

(2)人民教育出版社教材定义如下:

数列极限的精确定义(ε-N定义):设给定数列{an},A是一个常数,若对于任意给定的小正数ε,总存在某个正整数N,使得对大于N的一切n,都有an-A<ε,则称常数A为数列{an}当n趋于无穷大时的极限,或者称数列{an}收敛于A,记作:limn→∞an=A.

2.12几个相关概念溯源

(1)数列的概念:按一定次序排列的一列数,其中每个数叫做数列的项.

说明:数列是特殊的函数;数列可以看成以正整数集N*(或它的有限子集{1,2,3,等,n})为定义域的函数an等于f(n),当自变量从小到大依次取值时对应的一列函数值;数列与集合的区别是:有序和无序,可重复和不可重复.

(2)数列的通项公式:数列{an}的项与项数n之间的对应关系用一个公式表示:an等于f(n).说明:不是所有的数列都能写出通项,如3的不足近似值17,173,1732,等;一个数列的通项可能不唯一,如-1,1,-1,1,等可以写成an等于(-1)n-1,也可以写成an等于cos(n-1)π.

2.13定义的逻辑分析

无穷等比数列所有项的和:设无穷等比数列为a1,a1q,a1q2,等,a1qn-1,等,公比为q,当无穷等比数列的公比q满足|q|<1时,其前n项和的极限才存在.当0<|q|<1时,无穷等比数列前n项和的极限如下:

因为Sn等于a1(1-qn)1-q等于a11-q-a11-n(|q|<1),

所以limn→∞Sn等于limn→∞a1(1-qn)1-q等于limn→∞a11-qlimn→∞(1-qn)等于a11-q(limn→∞1-limn→∞qn)等于a11-q.

(因为0<|q|<1,所以limn→∞qn=0)所以limn→∞Sn=a11-q.

2.14概念的表征分析

有极限的数列一定是无穷数列.如果我们画一条数轴,把一个极限为A的数列{an}中的数和A都在数轴上表示出来,那么,我们从图形上可以看出,“数列{an}的极限是A”相当于“随着n的增大,表示an(n等于1,2,等)的点无限趋近于A的点”.什么叫做“无限趋近”,有多近,也就是说,“随着n越来越大,an点与点A的距离要多小,有多小”,但作为科学的数学,是不允许用“无限趋近”或“要多近,有多近”等含糊不清的语言来对概念下定义的.

2.15概念的发展简史

极限理论刻画的是有限到无限量变的动态过程.早在战国时期,我国著名哲学家庄周在所著《庄子天下篇》中就有“一尺之捶,日取其半,万世不竭”的论述.公元前263年刘徽根据圆内接正多边形边数越多,它的面积就越接近于圆面积的想法成功地推算出π的近似值是31416,可见那时候人们就有了朴素的极限思想并开始运用极限的方法.柯西在他的论著中,摆脱了与几何图形及几何量的任何牵连,但在他的叙述中,仍有一些语句需要作进一步解释.诸如“无限地趋近”,“要怎么小就怎么小”等,后来魏尔斯特批评柯西借助连续运动的直观定义极限.

2.2学情分析研究

高中学生已经掌握了必要的预备知识:如绝对值的概念、两点间的距离、解简单绝对值不等式的技能等.掌握了数列的项(按一定次序排列的一列数,其中每个数叫做数列的项.)、数列的通项公式(数列an的项与项数n之间的对应关系用一个公式表示:an等于f(n))、单调有界数列、单调无界数列、摆动有界数列、摆动无界数列的图像

关于基于PCK的高中数学教学设计的毕业论文开题报告范文
关于学科教学类论文范文例文
变化趋势,以及有极限的数列的前若干项与常数A的差的绝对值计算表,有观察图像变化趋势的能力.

(1)学生在以前的数学学习中一直接触的都是常量,而且都是有限量.他们没有遇到过无限的数学模型,习惯用一种不变的观点来分析问题.而极

1 2

关于学科教学类论文范文例文,与基于PCK的高中数学教学设计相关毕业论文怎么写参考文献资料:

幼儿园教师师德案例

幼儿教师考录

教师专业发展论文

小学音乐课教学论文

语文教学设计论文

教研论文发表

小学英语教学反思

小学语文教学随想

师德议论文

小学美术教学计划表

基于PCK的高中数学教学设计WORD版本 下载地址