关于高等数学类论文范例,与生入学考试中函数极限问题的解法相关论文查重
本论文是一篇关于高等数学类论文查重,关于生入学考试中函数极限问题的解法相关硕士论文范文。免费优秀的关于高等数学及参考文献及无穷小方面论文范文资料,适合高等数学论文写作的大学硕士及本科毕业论文开题报告范文和学术职称论文参考文献下载。
【摘 要】就近年全国硕士研究生入学考试数学试题中出现的有关函数极限的问题进行分析,总结出解决此类问题常用的技巧,期望能对准备考研的学生有所帮助.
【关 键 词】函数极限;洛必达法则;等价无穷小
极限是高等数学的一个重要概念,极限理论是现代微积分理论的基石.是否深刻理解极限概念是判断理工科大学生对高等数学掌握程度的一个重要指标.正因如此,研究生入学考试数学试题几乎每年必有函数极限的题目,而且考查内容非常全面,考查形式多种多样.考生要想做对比较综合的研究生考试题目,既需要对涉及的微积分学概念有深刻的理解,又需要具备灵活运用知识解决实际问题的能力.纵观历年试题,会发现极限题目大多可以用洛必达法则结合等价无穷小替换来解决.
一、预备知识
给出等价无穷小的定义及相关定理,详见参考文献[1].
定义1设变量α和α′均为某变量变化过程中的无穷小,若在该变化过程中limαα′等于1,则称α和α′为该变化过程的等价无穷小,记为α~α′.
定理1设在某变量的变化过程中,β~β′.若极限limα′β′存在,则极限limαβ也存在,并且limαβ等于limα′β′.
定理2设函数f(x),g(x)都是当x→a时的无穷小,f′(x),g′(x)都存在且g′(x)≠0,如果极限limx→af′(x)g′(x)存在(或为无穷大),那么limx→af(x)g(x)等于limx→af′(x)g′(x).
有关论文范文主题研究: | 关于高等数学的论文例文 | 大学生适用: | 专升本毕业论文、函授论文 |
---|---|---|---|
相关参考文献下载数量: | 95 | 写作解决问题: | 怎么写 |
毕业论文开题报告: | 论文提纲、论文目录 | 职称论文适用: | 期刊发表、职称评初级 |
所属大学生专业类别: | 怎么写 | 论文题目推荐度: | 免费选题 |
定理1说明,在计算分式的极限时,可以将分子和分母用与之等价的无穷小替换,极限的存在性及其值不变.因为等价无穷小是一种等价关系,所以,只将分式的分子或分母之一用等价无穷小替换,以及将分子或分母的某个因式用与之等价的无穷小替换,整个分式极限的存在性和极限值均不会发生改变.定理2即洛必达法则.虽然这两个定理形式上均是计算分式的极限,但定理2仅适用于计算函数极限,而定理1同时适用于函数极限和数列极限.二者皆是研究生入学考试的考点[2].下面通过实例说明综合应用这两个定理解决问题的方法和步骤.
说明虽然文献[4]已经对变上限积分的等价无穷小替换做了总结,但考生未必熟悉,且那里总结[4]中的例子并非囊括了一切情形,所以考生须
关于高等数学类论文范例
三、总结
根据上面题目的分析及解答,总结得出下面的解答技巧:首先判断极限类型.根据实际情况,如不是分式形式的极限则通过等价变形将其转化为计算“00”型不定式极限;然后根据分子和分母的形式,选择合适的等价无穷小替换简化分子或分母.如分式的分子或分母出现和、差的情况,则考虑利用初等函数的Taylor展式;如分子或分母含变上限积分,则考虑先用洛必达法则求导去掉积分,再利用等价无穷小替换;如分式中出现反三角函数,则可以先通过变量替换为三角函数,然后利用上述方法.具体问题可能重复交叉用到上面多个技巧.
本篇论文出处:http://www.sxsky.net/jiaoxue/0206293.html
鉴于研究生考试题量大,而答题时间有限,考生在下笔之前需先对题目进行多角度观察全方位考量,在脑海里初步形成多种解法,再选择一种相对直观且简洁的解法作答.
【参考文献】
[1]高等数学(第六版)上册,同济大学数学系编[M].2007.4,北京:高等教育出版社:57-59.
[2]全国硕士研究生招生考试数学考试大纲[M],教育部考试中心,2014.8,北京:高等教育出版社.
[3]全国硕士研究生招生考试数学考试分析[M],教育部考试中心,2014.8,北京:高等教育出版社.
[4]杨春玲,张传芳.变上限积分的等价无穷小[J].高等数学研究,2004(6):43-44.
关于高等数学类论文范例,与生入学考试中函数极限问题的解法相关论文查重参考文献资料: