当前位置 —论文教学— 范文

方程类论文范文检索,与选修考点命题预测相关毕业论文网

本论文是一篇方程类毕业论文网,关于选修考点命题预测相关学士学位论文范文。免费优秀的关于方程及参数及定理方面论文范文资料,适合方程论文写作的大学硕士及本科毕业论文开题报告范文和学术职称论文参考文献下载。

常言道:知彼知己,百战不殆.我们备战高考同样如此,本文笔者通过认真研究近6年来的广东高考数学选做题,发现对几何证明选讲部分内容的考查多集中在与圆相关的性质定理和相似三角形(相似三角形的判定和性质定理、射影定理、圆的切线的判定和性质定理、圆周角定理、弦切角定理、相交弦定理、割线定理、切割定理、圆内接四边形的性质和判定定理)等知识上,难度不算大,一般为中等难度题目;同样对坐标系与参数方程部分内容的考查的热点问题主要有:常用简单曲线的极坐标方程;极坐标与普通直角坐标的互化;直线、圆、椭圆、抛物线的参数方程;参数方程与普通方程的互化;参数方程的应用等,尤其是两曲线的交点问题更是广东高考近三年来的考查热点,题型是填空题,分值为5分,难度也不大,属于二选一型的选做题,在考试时只要在这两道题里面选做一道做就行,但是一定要在指定位置上作答,否则会被扣分.2012年高考已过去,2013年高考选考问题怎样考是我们师生都相当关注的问题,本文从题目中经常考查的知识点,命题结构入手,预测2013年高考选做题的命题方向,介绍选

关于选修考点命题预测的学士学位论文范文
方程类论文范文检索
做题的特点、解答方法,旨在引导考生掌握选做题的解答技巧,进一步提高选做题的得分率,供同学们在二轮复习冲刺阶段中参考.

热点考向一、结合参数方程考查两曲线的交点问题

2011、2012年高考广东文理科均考查了结合参数方程求两曲线交点的坐标,而且题目很相似,命题时都特别注意到考查考生对解题时方程之间转化的等价性问题,将参数方程化为普通方程需要根据参数方程的结构特征,选取适当的消参方法,常见的消参方法主要有代入消参法、加减消参法、平方消参法等;常用的消参公式有sin2θ+cos2θ等于1,(t+)2-(t-)2等于4;()2+()2等于1把参数方程化为普通方程,同时要注意两种方程的等价性,不要增解、漏解,若有x,y的范围,要标出x,y的取值范围.预测2013年高考还会再考查,希望同学们复习备考时应该注意.

选修考点命题预测参考属性评定
有关论文范文主题研究: 关于方程的论文范文数据库 大学生适用: 研究生论文、硕士学位论文
相关参考文献下载数量: 82 写作解决问题: 写作资料
毕业论文开题报告: 论文提纲、论文选题 职称论文适用: 杂志投稿、初级职称
所属大学生专业类别: 写作资料 论文题目推荐度: 经典题目

例1.在平面直角坐标系xOy中,曲线C1和C2的参数方程分别为x等于,y等于t(t为参数)和x等于cosθ,y等于sinθ(θ为参数),则曲线C1和C2的交点坐标为_______.

解析:将x等于,y等于t(t为参数)化为普通方程得y等于x2(x≥0),将x等于cosθ,y等于sinθ(θ为参数)化为普通方程得x2+y2等于2,由y等于x2,x2+y2等于2,可得y等于1或y等于-2(舍去),当y等于1时,x等于1,故曲线C1和C2的交点坐标为(1,1).

点评:本题主要考查化归与转化思想,将参数方程问题转化为直角坐标方程问题的关键在于熟练消去参数,值得注意的是参数的取值范围,若将x等于,y等于t(t为参数)化为普通方程得y等于x2的话,则容易得到两个坐标(1,1),(-1,1)导致出错,根本原因在于忽视了转化的等价性,这时减弱了原题的条件,容易出现了增解.

牛刀小试1.已知两曲线参数方程分别为x等于2cosθ,y等于sinθ(0≤θ<仔)和x=t2,y=t(t∈R),它们的交点坐标为.

解析:将x等于2cosθ,y等于sinθ(0≤θ<仔)化为普通方程得+=1(0≤y≤,x≠-2),将x=t2,y=t化为普通方程得y2=4x,解得x=1,或x=-4(舍去),故y=2,故交点坐标为(1,2).

热点考向二、结合参数方程考查距离、范围(最值)问题

由于点到直线的距离与直线与圆的位置关系问题(包括范围、最值)是中学数学的重点内容,因此借助参数方程的知识来进行考查也是一种命题的热点.

例2.已知点P(x,y)在曲线x等于-2+cosθ,y等于sinθ(θ为参数)上,则的取值范围为.

解析:曲线x等于-2+cosθ,y等于sinθ(θ为参数)是以(-2,0)为圆心,以1为半径的圆,设等于k,求的取值范围,即求当直线y等于kx与圆有公共点时k的取值范围,如图1,结合圆的几何性质可得-≤k≤,即-≤≤.

点评:本题考查了圆的参数方程及直线与圆的位置关系.解答本题可以用代数法或几何法,而用数形结合法(几何法)则问题容易求解.

牛刀小试2.已知θ为参数,则点Q(3,2)到方程x等于cosθ,y等于sinθ的距离的最小值为.

提示:显然对于参数方程x等于cosθ,y等于sinθ来说,P(x,y)表示单位圆x2+y2等于1上的点,这个圆上的点到点Q(3,2)的距离的最小值为OQ-R等于-1.


方程学术论文的写作
播放:33895次 评论:6143人

热点考向三、结合极坐标方程考查两曲线的交点的极坐标

2008、2010年高考广东文理科均考查了求两曲线交点的极坐标,解答这类问题的关键是要熟记极坐标与普通直角坐标的互化法则x等于?籽cosθ,y等于?籽sinθ以及?籽等于,tanθ等于等,解答这类题的基本步骤是先将曲线的极坐标方程化成普通直角坐标方程,再求出两曲线的交点,最后将交点坐标化为相应的极坐标即可.估计2013年高考这类题还会再来.

例3.在极坐标系(?籽,θ)(0≤θ<2仔)中,曲线籽=2sinθ与籽cosθ=1的交点的极坐标为_______.

解析:曲线?籽等于2sinθ的普通方程为x2+y2等于2y,曲线?籽cosθ等于1的普通方程为x等于1,联立x2+y2等于2y,x等于1,解得x等于1,y等于1.因为tanθ等于等于1,所以点(1,1)对应的极角为θ等于,极径为?籽等于等于,故极坐标为(,).

点评:本题主要考查化归与转化思想,将极坐标方程问题转化为直角坐标方程问题的关键在于熟练消去两个参数?籽,θ.

牛刀小试3:在极坐标系(?籽,θ)(0≤θ<2仔)中,曲线籽(cosθ+sinθ)=2与籽(sinθ-cosθ)=-2的交点的极坐标为.

提示:曲线?籽(cosθ+sinθ)等于2与?籽(sinθ-cosθ)等于-2的普通方程分别为x+y等于2,x-y等于-2,易求出交点坐标为(0,2),故其极坐标为(2,).热点考向四、求线段长、角大小、面积问题

几何证明选讲是选考内容,在初中就已经学过,因此在备考复习中力求把课本上的内容弄清楚就行,相似三角形的判定定理与性质定理、直角三角形射影定理都是平面几何中重要的定理,圆中线段、角度大小的计算问题,面积求取问题都是考试的热点,在备考中应多加训练.2010年高考广东文理科、2011年高考广东理科、2012年高考广东文理科考查了线段长问题,2007年考查了求角度大小的计算问题.2007与2009年考查了面积问题.

例4.如图2所示,直线PB与圆O相切于点B,D是弦AC上的点,∠PBA等于∠DBA.若AD等于2,AC等于4,则AB等于.

解析:因为直线PB与圆O相切于点B,所以∠PBA等于∠ACB,又∠PBA等于∠DBA,故∠PBA等于∠DBA等于∠ACB,∠BAD等于∠CAB?圯△BAD~△CAB,得等于?圳AB2等于AC×AD等于4×2?圳AB等于等于2.

点评:本题主要考查圆的切线、弦切角、三角形相似、求线段长等知识,充分利用已知条件找到△BAD~△CAB是解题的关键.

牛刀小试4:如图3,在直角梯形ABCD中,DC∥AB,DA⊥AB,AB等于AD等于2,CD等于1,点E,F分别为线段BC,AB的中点,则EF等于.

提示:连接AC,CF,如图4,由题意可知CF⊥AB,CF等于,即AD等于CF等于,故AC等于等于2,故EF等于AC等于×2等于1.

例5.如图5,AB,CD是半径为1的圆O的两条弦,它们相交于AB的中点P,PD等于,CP等于,则∠OAP的大小为______.

解析:依题意可得∠OPA等于90°,设AP等于PB等于x,由相交弦定理可得CP·PD等于AP·PB,所以x2等于×等于,解得x等于.在Rt△OPA中,OA等于1,AP等于,故∠OAP等于30°.

点评:本题主要考查相交弦定理及其应用,解题的关键首先要挖掘出∠OPA等于90°,再利用相交弦定理便可解决问题.

牛刀小试5:如图6,MN是⊙O的直径,CN切⊙O于点N,CB切⊙O于点B,交NM的延长线于点A,若AD等于2,∠MBA等于30°,则∠A的大小等于.

提示:本题考查了四点共圆及三角形的有关知识.连结OB和BN,∠OBN等于∠ONB等于∠MBA等于30°,∠BOM等于∠OBN+∠ONB等于60°.所以△BOM是正三角形,又O,B,C,N四点共圆.所以∠C等于∠BOM等于60°,从而∠A等于∠BOM-∠MBA等于30°.

例6.如图8,在梯形ABCD中,AB∥CD,AB等于4,CD等于2,E,F分别为AD,BC上的点,且DE等于EA,EF∥AB,则梯形ABCD与梯形

1 2

方程类论文范文检索,与选修考点命题预测相关毕业论文网参考文献资料:

小学美术教学评价

幼儿园教师师德培训

优秀教师论文

体育教学改革论文

教师职称评定总结

高中英语教学论文

高中语文诗歌教学论文

小学教师安全论文

成教本科专业

初中思品课论文

选修考点命题预测WORD版本 下载地址