当前位置 —论文教学— 范文

初中数学类论文范文文献,与初中数学二次函数性质和图象特征的运用相关毕业论文模板

本论文是一篇初中数学类毕业论文模板,关于初中数学二次函数性质和图象特征的运用相关专科毕业论文范文。免费优秀的关于初中数学及抛物线及坐标方面论文范文资料,适合初中数学论文写作的大学硕士及本科毕业论文开题报告范文和学术职称论文参考文献下载。

摘 要:初中数学教学中二次函数问题是综合性最强的教学内容,高度融合代数、几何的主要内容.本文从教学实际与中考命题内容分析以及初中数学学情出发,论述了二次函数性质和图象特征的运用的三个着手点:对称性、等面积、取值范围,有利于数学教师的课堂教学针对性教学的开展.

关 键 词:函数性质;图象特征;对称;等面积问题?摇

二次函数是初中数学的重点内容之一,在中考命题中广受青睐,是因为涉及二次函数的问题往往融初中代数、几何的主要内容于一体,在解决问题的过程中体现出对动静结合、数形结合、对称与非对称、极端特殊与一般化、归一等数学思想的领悟程度.本文从教学实际与中考命题内容分析以及初中数学学情出发,从对称性、等面积、取值范围三个方面论述二次函数性质和图象特征的运用.

正确运用抛物线的对称性可深挖题目隐含的解题条件

初中数学二次函数性质和图象特征的运用参考属性评定
有关论文范文主题研究: 关于初中数学的论文例文 大学生适用: 本科毕业论文、学院学士论文
相关参考文献下载数量: 27 写作解决问题: 写作参考
毕业论文开题报告: 论文提纲、论文目录 职称论文适用: 期刊发表、中级职称
所属大学生专业类别: 写作参考 论文题目推荐度: 免费选题

问题1如图1,以点C(1,1)为圆心,半径为2作圆,交x轴于A,B两点,抛物线开口向下过点A,B,其顶点D在⊙C上.求∠ACB的大小并确定此抛物线的解析式.

图1

此问题中,A,B两点的坐标易求,但是,求解D点坐标必须注意到圆和抛物线在此题条件中都是左右对称图形且对称轴重合,故而DC垂直于x轴,

关于初中数学二次函数性质和图象特征的运用的专科毕业论文范文
初中数学类论文范文文献
进而求出D点坐标,最终求出抛物线的解析式.

问题2如图2,已知抛物线y等于x2-x-,AB为圆的直径,圆与抛物线交于A,D,B,圆与抛物线对称轴交于点E,点P为线段AB上动点(P与A,B两点不重合),PM⊥AE于M,过线段EP上的点S作FG⊥EP,FG分别交AE、BE于点F、G(F与A、E不重合,G与E、B不重合),证明等于.

图2

在寻求思路时,学生很容易联想到等于,问题是如何转化为,但此题中,抛物线的对称轴与圆的对称轴重合,这就为对称性的运用提供了契机.△EAB为等腰直角三角形,△MAP为等腰直角三角形,MA等于MP,而五点E、F、M、P、S则构成学生最熟悉的相似图形,并能很快识别出∠EFS等于∠EPM,最终由△GEF∽△MEP证明等于,原命题也随即得证.在这一系列的证明步骤中,由抛物线的对称轴与圆的对称轴重合运用对称性,增添原题中没有的条件:△EAB,△MAP均为等腰直角三角形,是解题的关键.

涉及二次函数的等面积问题,往往要注意运用以下两个常见技巧:

1.运用平行线造就同底等高的三角形等积

问题3如图3点A坐标(2,4),直线x等于2交x轴于点B,抛物线y等于x2从点O沿OA方向平移,交x等于2于点P,顶点M(m,n)到达A点时停止移动.当m为何值时,线段PB最短?此时相应的抛物线上是否存在点Q,使△QMA的面积与△PMA的面积相等,若存在,请求出点Q的坐标;若不存在,请说明理由.

图3

此题中第一问可以先由A点坐标和坐标原点求出直线OA的解析式,进而用m表示出n,进而求出抛物线y等于x2平移到M点后的新坐标式,再令新坐标式中x等于2,求出P点纵坐标的表达式(含有m),视为m的函数,m∈[0,2]时,求出何时PB最短;难点是在第二问,在解决第二问之前,必须定性判断出若Q点存在,那么如何首先以几何方式寻找出Q点的位置,并根据几何特征采用相应的推理或计算步骤?如图示,可以将直线PA左右平移,假设平移后与抛物线的交点为D且D、M与直线x等于2水平距离相等,那么△DAP与△MAP同底(底为AP)等高,必然等积,所以D点即所求之一;同理,可以将直线AM平移,设平移后与抛物线交于E且E点与P点到AM等距,则△EAM与△PAM同底等高(底为AM)等积,E点也为所求;又或同理,可以将直线MP平移,设平移后与抛物线交于F且F点与A点到AM等距,则F点还为所求.一旦寻求到解决的思路,则问题迎刃而解.


初中数学本科毕业论文这么写
播放:29534次 评论:3502人

(2)充分运用双曲线上的动点及其在坐标轴上的投影、坐标原点三点组成的三角形定积

双曲线与二次函数结合的问题在近年中考中屡见不鲜,充分运用双曲线y等于(a>0)上的动点及其在坐标轴上的投影、坐标原点三点组成的三角形定积,这个定积就是双曲线对应的反比例函数解析式中的定值的一半,在一些问题中成为解决难点的关键.

问题4如图4,已知抛物线y等于ax2+b与双曲线交于C点,连接CO,动点P从O点出发,沿OA向A点移动,作PM交抛物线的对称轴于M点,已知△OMP的面积S与P点的坐标x关系为S等于4x2,当△OMP与△OMC全等时,S等于16,且此时DM为OD的,试求抛物线的解析式.

图4

此问题中,关键在于△OMP与△OMC全等时,△OMC的面积恰好为C点纵、横坐标之积的一半,而C点位于双曲线上,C点纵横坐标之积的一半为定值k.S等于4x2表明纵坐标为横坐标的8倍,于是此题中立即可得C点坐标,同时求得M点纵坐标,再由DM为OD的,求出D点坐标,最终代入y等于ax2+b,求出解析式.

对于二次函数求最大或最小值的问题,特别要注意横坐标的取值范围

对于二次函数求极值的问题,大多数学生通常是由x等于-,y等于求出y的最大或最小值,但这种方法只有在x的取值为任意实数时才能保证是正确的;当x的取值在指定范围时,首先要看顶点在不在此范围内,若在,顶点值就为最大(或最小),再和x最小或最大时的y进行比较,进而确定出y最小(或最大值);若不在,直接将x最小或最大时的y进行比较,进而确定出y最小和最大值,必要时,对于函数式进行变形再讨论.

问题5如图5,某公司生产的甲类产品利润与件数的关系为y等于28x,乙类产品利润与件数的关系为y等于2x2-16x+35,在保证总是甲类产品利润高的情况下,乙类产品的最大利润和最小利润分别是多少以及两类产品的利润差在何范围?

图5

处理第一问时,“保证总是甲类产品利润高”其实就是限定了x的取值范围必须保证抛物线的图象位于直线的下方.这样,必须由y等于28x,y等于2x2-16x+35解出它们的交点坐标,得出x的取值范围,易得抛物线的顶点纵坐标即为所求最小值,而右边交点的纵坐标为所求最大值;但在解决第二问时,是在已经求出的x的取值范围中,计算一个新的函数y等于28x-(2x2-16x+35),必须对此函数求出其顶点坐标,看这个新函数的顶点坐标是否在第一问中已经求出的x的取值范围中,然后计算其最大、最小值,尤为值得注意的是尽管二次项系数为负,顶点值未必是最大值.


该文网址:http://www.sxsky.net/jiaoxue/020771738.html

总之,二次函数的图象和性质的运用需要针对不同的条件灵活选择解题的途径,需要在通法之中注意特例,注意题中的“陷阱”与隐含条件.

初中数学类论文范文文献,与初中数学二次函数性质和图象特征的运用相关毕业论文模板参考文献资料:

文学理论教程论文

师德获奖论文

生物教学论文发表

教师职称论文发表网

苏教版小学数学教学论文

生物教学特色

有关语文教学的论文

关于识字写字教学论文

酒店英语教学

幼儿教师爱岗敬业论文

初中数学二次函数性质和图象特征的运用WORD版本 下载地址