计算机有关论文范例,与硕士学位文重复率武汉相关论文格式模板
本论文是一篇计算机有关论文格式模板,关于硕士学位文重复率武汉相关电大毕业论文范文。免费优秀的关于计算机及算法及试题方面论文范文资料,适合计算机论文写作的大学硕士及本科毕业论文开题报告范文和学术职称论文参考文献下载。
:D:33/10等于0.3Total1010/10等于1Duringreproductioncrossoversoccuratarandomplace(centerofthegenomeforA',B'andC',justafterthefirstgeneforD').Thelinkexistingbetweenthedegreeofadaptationandtheprobabilityofreproductionleadstoatrendtotheriseoftheaveragefitnessofthepopulation.Inourcase,itjumpsfrom7to10.
Duringthefollowingcycleofreproduction,C'andD'willhaveamondescendant:
D':+C':等于
Thenewsubjecthasinheritedtheintendedgenome:hispawshavebeeflippers.
Wecanthenseethattheprincipleofgeicalgorithmsissimple:
Encodingoftheprobleminabinarystring.
Randomgenerationofapopulation.Thisoneincludesageicpoolrepresentingagroupofpossiblesolutions.
Reckoningofafitnessvalueforeachsubject.Itwilldirectlydependonthedistancetotheoptimum.
Selectionofthesubjectsthatwillmateaccordingtotheirshareinthepopulationglobalfitness.
Genomescrossoverandmutations.
Andthenstartagainfrompoint3.
Thefunctioningofageicalgorithmcanalsobedescribedinreferencetogenotype(GTYPE)andphenotype(PTYPE)notions.
SelectpairsofGTYPEaccordingtotheirPTYPEfitness.
Applythegeicoperators(crossover,mutation...)tocreatenewGTYPE.
DevelopGTYPEtogetthePTYPEofanewgenerationandstartagainfrom1.
Crossoveristhebasisofgeicalgorithms,thereisneverthelessotheroperatorslikemutation.Infact,thedesiredsolutionmayhappennottobepresentinsideagivengeicpool,evenalargeone.Mutationsallowtheemergenceofnewgeicconfigurationswhich,bywideningthepoolimprovethechancestofindtheoptimalsolution.Otheroperatorslikeinversionarealsopossible,butwewon'tdealwiththemhere.
D-AdaptationandSelection:thescalingproblem
Wesawbeforethatinageicalgorithm,theprobabilityofreproductiondirectlydependsonthefitnessofeachsubject.Wesimulatethatwaytheadaptivepressureoftheenvironment.
Theuseofthismethodneverthelesssettwotypesofproblems:
A"super-subject"beingtoooftenselectedthewholepopulationtendstoconvergetowardshisgenome.Thediversityofthegeicpoolisthentooreducedtoallowthegeicalgorithmtoprogress.
Withtheprogressionofthegeicalgorithm,thedifferencesbetweenfitnessarereduced.Thebestonesthengetquitethesameselectionprobabilityastheothersandthegeicalgorithmstopsprogressing.
Inordertopalliatetheseproblems,it'spossibletotransformthefitnessvalues.Herearethefourmainmethods:
1-Windowing:Foreachsubject,reduceitsfitnessbythefitnessoftheworsesubject.Thispermitstostrengthenthestrongestsubjectandtoobtainazerobaseddistribution.
2-Exponential:Thismethod,proposedbyS.R.Ladd,consistsintakingthesquarerootsofthefitnessplusone.Thispermitstoreducetheinfluenceofthestrongestsubjects.
3-LinearTransformation:Applyalineartransformationtoeachfitness,i.e.f'等于a.f+b.Thestrongestsubjectsareonceagainreduced.
4-Linearnormalization:Fitnessarelinearized.Forexampleoverapopulationof10subjects,thefirstwillget100,thesecond90,80...Thelastwillget10.Youthenavoidtheconstraintofdirectreckoning.Evenifthedifferencesbetweenthesubjectsareverystrong,orweak,thedifferencebetweenprobabilitiesofreproductiononlydependsontherankingofthesubjects.
Toillustratethesemethods,let'sconsiderapopulationoffoursubjectstochecktheeffectofscaling.Foreachsubject,wegivethefitnessandthecorrespondingselectionprobability.
Subjects1234RoughFitness50/50%25/25%15/15%10/10%Windowing40/66.7%15/25%5/8.3%0/0%Exponential7.14/36.5%5.1/26.1%4.0/20.5%3.32/16.9%Lineartransfo.53.3/44.4%33.3/27.8%20/16.713.3/11.1%Linearnormalization40/40%30/30%20/20%10/10%Windowingeliminatestheweakestsubject-theprobabilityestozero-andstimulatesthestrongestones(thebestonejumpsfrom50%to67%).
Exponentialflattensthedistribution.It'sveryusefulwhenasuper-subjectinducesanexcessivelyfastconvergence.
Lineartransformationplaysslightlythesamerolethanexponential.
Atlast,linearnormalizationisneutraltowardsthedistributionofthefitnessandonlydependsontheranking.Itavoidsaswellsuper-subjectsasatoohomogeneousdistribution.
Conclusion
GeicalgorithmsareoriginalsystemsbasedonthesupposedfunctioningoftheLiving.Themethodisverydifferentfromclassicaloptimizationalgorithms.
Useoftheencodingoftheparameters,nottheparametersthemselves.
Workonapopulationofpoints,notauniqueone.
Usetheonlyvaluesofthefunctiontooptimize,nottheirderivedfunctionorotherauxiliaryknowledge.
Useprobabilistictransitionfunctionnotdeterministones.
It'simportanttounderstandthatthefunctioningofsuchanalgorithmdoesnotguaranteesuccess.Weareinastochasticsystemandageicpoolmaybetoofarfromthesolution,orforexample,atoofastconvergencemayhalttheprocessofevolution.Thesealgorithmsareneverthelessextremelyefficient,andareusedinfieldsasdiverseasstockexchange,productionschedulingorprogrammingofassemblyrobotsintheautomotiveindustry.
附录2外文翻译
遗传算法介绍
物理生物经济或社会学往往要问题经济,数学发展(龙王鲸
龙王鲸龙王鲸龙王鲸龙王鲸
瓶鼻海豚尾鳍飞龙目动物
上一页 3 4 5 6 7 8 9 10 11 12 下一页
计算机有关论文范例,与硕士学位文重复率武汉相关论文格式模板参考文献资料: