关于计算机论文范文数据库,与基于计算机视觉无推车的四轮定位技术相关毕业论文模板
本论文是一篇关于计算机毕业论文模板,关于基于计算机视觉无推车的四轮定位技术相关毕业论文范文。免费优秀的关于计算机及矩阵及相机方面论文范文资料,适合计算机论文写作的大学硕士及本科毕业论文开题报告范文和学术职称论文参考文献下载。
【摘 要】基于计算机视觉的四轮定位技术能高效快速定位车轮的各项参数,具有很好的应用前景.本文对基于计算机视觉无推车的四轮定位技术进行研究,给出本文中方法的详细数学模型
关于计算机论文范文数据库
【关 键 词】计算机视觉四轮定位相机标定仿射变换透视投影畸变系数
WheelAlignmentBasedOnComputerVisionWithoutPushingCarTechniqueResearch
本文来源 http://www.sxsky.net/zhengzhi/050229353.html
WangQiu1,ZhouYue1DepartmentofAutomation,SchoolofShanghaiJiaoTongUniversity,
HeJian-guoCompanyofDahengImage)
Abstract:Wheelalignmenttechnologybasedonputervisionwhichcangettheparametersofthewheelquicklyandefficiently,hasgoodprospects.Thispaperresearchesalignmenttechnologybasedonputervisionwithoutpushingcar.Thispapergivesadetailedmathematicalmodelofthemethod,andwehavedoneafieldexperimenttest.Theresultsshowthattheproposedmodeliscorrectandefficient.Themethodproposedisaninnovationinthefieldofalignmenttechnology.
Keywords:putervision,perspectiveprojection,cameracalibration,distortioncoefficient,affinetransformation,wheelalignment
一、引言
随着国民经济的发展,越来越多的汽车进入千家万户,随之对汽车的维护需求也日益膨胀,而作为车辆维护的必要设备―四轮定位系统,本文提出的方法标定方法简单,并且采用无推车的技术让操作更加方便.
二、模型分析
本文采用单标定板标定两个相机的方式,该方式可以降低传统的标定方法带来的标定误差,高精度的还原两摄像机的位姿关系,在定位阶段,不需要操作者去推车获取车轮的各项参数,本文提出的方法可以直接提取车轮姿态计算出定位参数.
有关论文范文主题研究: | 关于计算机的论文范文文献 | 大学生适用: | 电大论文、专科论文 |
---|---|---|---|
相关参考文献下载数量: | 99 | 写作解决问题: | 怎么写 |
毕业论文开题报告: | 标准论文格式、论文目录 | 职称论文适用: | 核心期刊、高级职称 |
所属大学生专业类别: | 怎么写 | 论文题目推荐度: | 最新题目 |
2.1圆心提取
空间圆成像后通常呈现为椭圆的图像,而椭圆的中心并不是空间圆心所对应的像素点,图1显示了空间圆经过透视投影变换后其中心点的变化.
针对这个问题,Heikkil已经对其进行了研究,并建立空间圆心在相机成像平面上的畸变误差模型[1].
2.2相机标定
本文是采用标定板标定板上有很多圆点,如图2,图样左上角有一个三角定位点,用于确定标定板的x,y,z轴方向.
平面靶标上的圆点中心记为W等于[x,y,z]T,其图像坐标为m等于[u,v]T,对应的齐次分别坐标为W'等于[x,y,z,1]T,m'等于[u,v,1]T.由摄像机的成像模型,空间点W'与m'之间的关系如下:
sm'等于A[Rt]W'(1)
式(1)中,s为尺度因子,R为标定板相对于相机轴的旋转矩阵,t为标定板相对于相机的平移向量,A为摄像机内部参数矩阵,A定义如下:
A等于aru0av001
其中,(u0,v0)为图像平面主点坐标,ax,ay为图像坐标轴的尺度因子,r是图像坐标轴的不垂直度.在二维平面靶标中,通常我们认为靶标上的点的z为0,即设定标定板平面为世界坐标轴的xoy平面.在图二中我们设定世界坐标系的x轴向右,y轴向下,z轴垂直纸面向里.我们把矩阵R的每一列用ri(i等于1,2,3)表示,则式(1)表述如下:
suv1等于A[r1r2r3t]xy01等于A[r1r2t]xy1(2)
令H等于kA[r1r2t]为一个3行3列的方阵,r1,r2为图像坐标轴的方向矢量,k为常数,记H等于[h1h2h3],则
[h1h2h3]等于kA[r1r2t](3)
由于t不会位于r1,r2构成的平面上,且r1,r2正交,则det[H]≠0.H的计算是使图像坐标pi与(1)式计算的mi'方差最小的过程,定义目标函数:
F(H)等于min∑‖pi-mi'‖(n为点数)
令等于0,即可求出H.求出H后,由R的正交性(r1Tr2等于0,r1Tr1等于r2Tr2)可得方程:
h1TA-TA-1h2等于0h1TA-TA-1h1等于h2TA-TA-1h2(4)
令
B等于A-TA-1等于BBBBBBBBB
经计算上述矩阵后,得知B为对称矩阵.则令:
b等于[B11,B12,B22,B13,B23,B33]T
设H中第i列向量为hi等于[h1i,h2i,h3i]T,因此有
hiTBhj等于Vijb
其中
Vij等于[h1ih1j,h1ih2j+h2ih1j,h2ih2j,h3ih1j+h1ih3j,h3ih2j+h2ih3j,h3ih3j]即可将等式(4)改写为以下齐次方程
v12T(v11-v12)Tb等于0(5)
如果将平面靶标移动n个不同的位置,拍摄n幅图像,可以得到n个(5),将这n个方程组合起来,可得:
Vb等于0
其中V为一2n行6列的矩阵,对V进行奇异值分解求出b,求出b后,利用Cholesky矩阵分解算法求出A-1,即可求出摄像机内参矩阵A,得到A后可根据(3)式求出摄像机外参:
r1等于r2等于r3等于r1×r2t等于
该系统中我们采用了两个相机,通过以上求解可以得到左右相机外参分别为Rl,tl以及Rr,tr,对于两相机公共视场中的任意一三维点xw,在左右相机中成像点坐标为xl,xr则:
xl等于Rlxw+Tl,xr等于Rrxw+Tr
两式消掉xw,得到xr等于RlRr-1xl+Tr-RlRr-1Tl,因此可得两摄像机的相对位置关系如下:
R等于RlRr-1,T等于Tr-RlRr-1Tl
令Hr2l等于RT01,该矩阵在2.4节中需要用到.
2.3参数获取
根据已知参数,我们可以的到空间圆方程,将空间圆的方程表述如下:
MTCM等于0
其中M等于[x,y,1]为空间平面圆上的点(z等于0).C为圆的系数矩阵,矩阵各项参数已知.
经过相机成像以后,在图像平面上一般呈椭圆形状,其方程表述为:
mTQm等于0(6)
其中m等于[x,y,1]为成像平面椭圆上任意一点.Q为椭圆的系数矩阵,矩阵各项参数已知.
M与m存在一边换矩阵H,即:
sm等于HM(7)
其中s为缩放因子,H为待求矩阵.
将(7)带入(6),可得:
C等于HTQH(8)
从上式即可求出H矩阵.确定H矩阵之后,已知A,即可求得r1,r2,r3,t.我们就可以得到车轮中心点在摄像机坐标系下的坐标C(x,y,z)以及车轮法向量在相机坐标系下的表示V(Vx,Vy,Vz).
2.4仿射变换
变换后的的中心点记为Cr2l,变换后的法向量记为Vr2l,变换等式表述如下:
Vr2l等于HV
Cr2l等于HC
2.5获取结果
经过上述仿射变换之后,我们可以得到四个轮胎在左相机下的各项参数,根据四个车轮中心点,我们可以用LM算法拟合车身平面,求出车身法向量P(Px,Py,Pz)再结合四个车轮法向向量V,我们即可得到车轮的各项参数.
三、实验
3.1相机标定
实验用大恒MER-130-30UM工业相机,采用日本Computar1614-MP2工业镜头,照明为普通的直流灯管.经过双相机的标定,标定出左相机参数Al,右相机参数Ar,左右相机的相对变换矩阵Hr2l,将Hr2l转化为位姿P的形式,其中前三个分量为右相机相对左相机的平移分量(单位为米),后三个分量为右相机相对做相机的旋转分量(单位为角度).Al,Ar,Hr2l,P值如下:
P等于[2.33575,-0.00635,0.0793,3.08728,-58.1271,
1.15163]
3.2实验结果
后轮效果图如图3所示,相机拍摄的前轮效果图如图4所示,处理后的效果分别如图5,图6所示.
上图车轮红色区域即为提取的成像的
关于计算机论文范文数据库,与基于计算机视觉无推车的四轮定位技术相关毕业论文模板参考文献资料: