本论文是一篇电子计算机方面有关论文格式,关于二进制数在经典数学题中的应用相关研究生毕业论文开题报告范文。免费优秀的关于电子计算机及计算机及大学计算机基础方面论文范文资料,适合电子计算机论文写作的大学硕士及本科毕业论文开题报告范文和学术职称论文参考文献下载。
摘 要:电子计算机的广泛应用主要得益于二进制数的发展,二进制数除了应用在电子计算机中,在生活的其他领域也发挥着重要的作用.本文笔者首先对二进制数的概念及其运算规则进行了概述,然后详细分析了二进制数在经典数学题中的应用.
关 键 词:二进制数;数学题;应用
当代电子计算机的核心之一就是使用二进制数.早在1673年,27岁的德国数学家布莱尼兹在研究计算机模型时就认识到了二进制数的重要性,并系统地提出了二进制数的运算法则.二进制数不仅在电子计算机中得到了广泛的应用,而且在实际生活中也得到了广泛的应用,尤其是在解决一些比较复杂的数学题时,更是发挥了重要的作用.本文笔者简要介绍了一下二进制数的概念以及应用原则,并以两个经典数学题为例分析了二进制数在经典数学题中的应用.
一、二进制数的概念
下面我们以十进制数为例,来认识一下二进制数.十进制数是以十为基底的进位计数制,十进制数是使用0、1、2、3、4、5、6、7、8、9十个有序的数字符号及一个小数点符号来表示的,而且是“逢十进一”,即各相邻位的“权”(所谓权,指的是在进位数制中,为了确定一个数位的实际数值必须乘上的因子)之比都固定为“10”.以此为基础再来看二进制数,从进位计数制的理论观点来看,在所有可能的基底中,二进制数最小的基底是2.在二进制数中,只有数字符号0和1及一个小数点符号,并且是“逢二进一”,各相邻位的“权”之比为“2”.无论是刚才介绍的十进制数还是二进制数,都属于进位计数制,它们各相邻位的“权”之比都是固定的.
二、二进制数的运算规则
二进制数的运算不仅包括算术运算,而且还包括逻辑运算.在算术运算上,二进制数与十进制数一样,同样可以进行加、减、乘、除四则运算.二进制数的逻辑运算则是指对因果关系进行分析的一种运算.逻辑运算的结果并不表示数值大小,而是表示一种逻辑概念.常见的二进制数的逻辑运算有“与”“或”“非”和“异或”4种.
1.二进制数的四则运算法则
加法:0+0等于0,0+1等于1,1+0等于1,1+1等于0(向高位进位);
减法:0-0等于0,0-1等于1(向高位借位),1-0等于1,1-1等于0;
有关论文范文主题研究: | 关于电子计算机的论文范文素材 | 大学生适用: | 专升本论文、函授论文 |
---|---|---|---|
相关参考文献下载数量: | 86 | 写作解决问题: | 怎么写 |
毕业论文开题报告: | 文献综述、论文摘要 | 职称论文适用: | 论文发表、初级职称 |
所属大学生专业类别: | 怎么写 | 论文题目推荐度: | 优质选题 |
乘法:0×0等于0,0×1等于0,1×0等于0,1×1等于1;
除法:0÷1等于0,1÷1等于0.
2.二进制数的逻辑运算规则
若干位二进制数组成逻辑数据,位与位之间无“权”的内在联系.对两个逻辑数据进行运算时,每位之间相互独立,运算是按位进行的,不存在算术运算中的进位和借位,运算结果仍是逻辑数据.
与:用符号“∧”来表示0∧0等于0,0∧1等于0,1∧0等于0,1∧1等于1;
或:用符号“∨”来表示0∨0等于0,0∨1等于1,1∨0等于1,1∨1等于1;
非:常在逻辑变量上面加一横线表示等于1,等于0;
异或:用符号“”来表示00等于0,01等于1,10等于1,11等于0.
三、二进制数在经典数学题中的应用
1.经典例题一
二进制数在位数相同的时候没有十进制数所表示的数值大,有时为了表示一个很小的数却需要用很长的一行表达式.如79,用二进制数表示则为1001111.但是在解决一些数学问题的时候,有时候采用二进制数反而会比较简洁明了,便于计算.在学习数学的时候我们都会接触到“放麦粒”这一经典例题,在解决这一问题的时候就比较适合用二进制数.下面就来具体分析一下二进制数在这道经典数学题中的应用.
电子计算机方面有关论文范文资料
2.经典例题二
小学的数学题中常有类似这样的题:有5瓶药,每瓶中有20粒药丸,每粒药丸重10克,其中有1瓶受潮了,受潮的每个药丸重11克.给你一个天平,你怎样一次就能测出哪几瓶是受潮的药呢?这样的题,很容易思考.首先,将5瓶药编号为1-5号,从中分别取出1、2、3、4、5粒药丸,这样进行称重.如果全是没有受潮的话,应是(1+2+3+4+5)×10等于150(克).如果称出的重量是152克,那么超出的重量是2克,说明有2÷(11-10)等于2(粒)超重,因此超重的药是第2瓶.如果称出的重量是155克,那么超出的重量是5克,说明有5÷(11-10)等于5(粒)超重,因此超重的药是第5瓶.
那么,如果我们把已知有1瓶药受潮改为有几瓶药受潮,问题是不是就变得复杂了呢?即题目改为:有5瓶药,每瓶中有20粒药丸,每粒药丸重10克,其中有几瓶受潮了,受潮的每个药丸重11克.给你一个天平,你怎样一次就能测出哪几瓶是受潮的药呢?这样的话直接使用上述的方法是行不通的,比如称出的重量是155克,那么超出的重量是5克,说明有5÷(11-10)等于5(粒)超重,那么超重的药可能是第1瓶和第4瓶的,也可能是第2瓶和第3瓶的,也可能是第5瓶的.所以要换一种思路来思考这个问题.称重量的想法是没有错的,那么可以进行改进的就是选取药丸的数量.如果已经学习过二进制数,则可以轻松地想到,首先,将5瓶药编号为1-5号,从中分别取出1、2、4、8、16粒药丸,这样进行称重.如果全是没有受潮的话,应是(1+2+4+8+16)×10等于310(克).假如称出的重量是312克,那么超出的重量是2克,说明有2÷(11-10)等于2(粒)超重,2等于(00010)2,因此超重的药是第2瓶的.如果称出的重量是315克,那么超出的重量是5克,说明有5÷(11-10)等于5(粒)超重,5等于(00101)2,因此超重的药
电子计算机方面有关论文范文资料,与二进制数在经典数学题中的应用相关论文格式参考文献资料: