本论文是一篇关于量子计算机本科毕业论文范文,关于当光学遇上纳米技术相关电大毕业论文范文。免费优秀的关于量子计算机及计算机及材料方面论文范文资料,适合量子计算机论文写作的大学硕士及本科毕业论文开题报告范文和学术职称论文参考文献下载。
现代科学技术的发展越来越强调学科之间的交叉和融合.光学作为物理学中一个古老的分支,与21世纪先进的纳米微加工技术和材料生长技术结合,诞生了超构材料这个新兴交叉学科.
站在这块交叉学科的前沿高地,具备多重身份――南京大学物理学院教授、固体微结构物理国家重点实验室副主任、教育部新世纪人才的刘辉,凭着对科学的热爱和执著,引领我国光学超构材料前沿发展,使之在世界舞台独放异彩.
神奇的光学超构材料
从人类发明第一台计算机,到我们今天日常使用的笔记本电脑和手机,电子集成技术取得了巨大的成功.相比电子集成技术,光子集成技术却相对落后很多.现在,对光学领域的科学家而言,要面对的基本问题是:未来人们能否成功实现光子集成技术,并将其应用于光子计算呢?为了实现光子集成芯片,科学家提出了各种不同的结构体系,其中光学超构材料是目前国际上研究的热门领域.
量子计算机自考论文怎么写
播放:31660次 评论:5410人
“超构材料的基本方法是利用各种纳米结构单元,在小尺寸上实现光子的调控.”而刘辉这几年的研究主要是结合光子集成芯片的国家重大需求和超构材料的国际前沿领域,围绕超构材料光子集成芯片而开展的.
超构材料是科学家通过模拟自然界中的材料,设计并制造出来的一种新型人工微结构材料.由于这种材料的组成单元完全是人为设计的,可以实现许多自然材料所没有的新颖而独特的性质与应用,因此我们将这种材料称为超构材料.超构材料主要应用在对各种波进行调控,比如早期大多集中在声波、微波、和太赫兹波领域,随着波长减小,单元的尺寸越来越小,超构材料的制备越来越困难,特别是光学波段的超构材料,在加工与测量方面面临很多困难与挑战.
科技人才最重要的价值体现在他们的创造价值上,那就是利用掌握的专业知识进行创造性的劳动,提出新的理论和新的解决方法,并转化为新的生产力.在刘辉看来,光学超构材料的未来发展趋势也是如此――发挥本身的优势,与其他领域结合起来,为解决各种具体应用问题提供新的方法和手段.
他提到,目前光学超构材料在生物成像领域有一个很重要的应用――超分辨成像.刘辉谈到,最近几年,科学家利用光学超构材料制造出的超级透镜,可以突破光学成像的衍射极限,分辨出远小于波长尺寸的生物分子,这对分子生物学的发展具有很重要的意义.在光学超构材料的另一个重要的应用领域――光信息计算技术上如果有所突破,将提高计算机的计算速度.科学家提出量子计算机的构想,利用量子力学效应,可以大大提高计算机的处理速度,量子计算机将对未来信息技术的发展产生巨大的飞跃.为了实现量子计算机,有很多不同的结构体系,其中可以利用超构材料光子芯片上实现了控制非门的量子逻辑运算.刘辉说:“这是光学超构材料在量子计算机应用上一个很重要的进展.目前,我自己也正在抓紧时间,从事相关方面的研究.”
不容忽视的耦合作用
正因为超构材料为解决各种具体应用问题提供新的方法和手段,所以激发了很多研究者的兴趣,与其有关的应用也层出不穷,但其基本的研究思路却是非常简单的:将很多小的结构单元组成宏观上连续的介质,通过结构单元的设计控制材料的等效参数,以此来控制材料中光波的传播行为.
根据一般的等效介质模型,结构单元之间的耦合很小,可以被忽略,但在组成超构材料时情况就完全不一样,结构单元之间的耦合作用总是存在的,特别是当单元之间的距离很近的时候,这种耦合作用是不能被忽略的.刘辉说,因为它们会对材料的总体性质产生很大的影响.
那么,如何建立耦合超构材料理论模型?单元之间的耦合效应会给我们带来什么新奇的性质?我们能否在耦合超构材料中找到其他新的应用?这些以前没有考虑甚至被忽视的问题都一一呈现在刘辉眼前.
针对这些问题,这几年刘辉对超构材料中各种耦合效应进行了系统而深入的研究.经过仔细比较自然材料和超构材料,他发现,耦合效应其实在自然材料中是普遍存在的一种性质.
“就像化学中原子之间的轨道耦合会形成复杂的分子,晶体中原子的近邻耦合会形成格波一样,如果我们借用自然材料中一些现有的理论模型,有可能解决超构材料中的各种耦合问题.”科学间也许就存在很多异曲同工之妙,而唯有善于思考的人才能抓住其中的共通之处.
这几年,刘辉按照这个思路,成功地将量子化学的轨道理论和凝聚态物理中格波色散理论用于研究光学超构材料各种耦合效应,发现耦合超构材料的宏观性质可以看作是相互作用结构单元之间“杂化效应”的结果.同时经过系统研究,他还发现耦合超构材料会具有一系列传统无耦合超构材料所没有的新奇而有趣的性质.
根据结构单元之间的耦合作用情况,超构材料被分成:超构分子、超构原子链和超构晶体.随着研究的深入,刘辉
关于量子计算机论文范文
刘辉本人因为在耦合超构材料方面的学术贡献,被多个国际光学期刊邀请撰写相关的综述文章,很多国际著名的研究组也对他的研究工作进行了正面的引用和评价.
美国工程院士Rice大学的NaomiJ.Halas教授和PeterNorlander教授是surfaceplasmon领域国际知名学者,他们在多篇文章中引用了刘辉的工作,并进行了正面的评价.包括澳大利亚国立大学的YuriKivshar教授,E.Ozbay教授,英国南安普顿大学的N.I.Zheludev教授、台湾大学蔡定平教授、德国爱尔朗根大学E.Shamonina教授、荷兰原子与分子物理研究所的A.Koenderink教授在内的超构材料领域多位国际知名学者都在多篇文章中援引并高度肯定了他的工作和成果.
正是因为有了他们所做的前沿工作,超构材料中共振单元之间耦合作用所导致的杂化效应正在吸引越来越多的研究者的兴趣,一些新奇现象和性质不断被研究报道,促使产生了普通无耦合超构材料中所没有的应用.基于此,耦合超构材料已经发展称为微纳光子学中的一个重要的分支领域.在实验室模拟天体扭曲光线
对刘辉来说,过去的2013年可圈可点的工作一定非光学超构材料莫属.他们的成果入选了由中国激光杂志社主办、多名国内一流光学专家组成评委会评选的“2013中国光学重要成果”.不仅如此,刘辉还受邀参加几个国际会议并作报告,介绍他们的工作和进展.
早期设计的超构材料的折射率都是均匀分布的,光子在超构材料中都是沿着直线传播.后来,人们将超构材料的设计方法进行推广后发现,如果控制折射率是非均匀分布,可以使光线弯曲传播,由此可以设计出许多有趣的变换光学效应,实现各种新奇的应用,比如电磁隐身衣、光学引力场等.虽然变换光学的理论方法听起来简单可行,但在实际材料中实现起来,却是非常地困难.
具体到光波段变换光学超构材料研究中,刘辉的思路是,通过控制材料的宏观参数来控制波的传播,具体到光学超构材料上,是通过控制材料的折射率,来控制光的传播.在这一前沿领域,刘辉不畏未知的风险,挑战了一项有趣的课题――利用变换光学材料来模拟天体引力场的弯曲时空,实现广义相对论所预言的引力透镜效应.科学的想法很多在存在于理论之中,将之付诸实践需要科学家的实力,更需要勇气,这一挑战在几年前,就有人提出过相关的理论模型,却并没有人在实验室完成过.
这3年来,为了在光波段变换光学的实验技术方面取得突破,刘辉指导学生盛冲尝试了各种制备工艺.通过不断尝试,最终在实验中,他们没有采用结构单元设计,而是采用平面波导来制作变换光学器件,通过光刻胶的旋涂工艺制作厚度变化的波导,以此来控制折射率分布.通过这种技术,他们在
关于量子计算机论文范文,与当光学遇上纳米技术相关本科毕业论文范文参考文献资料: