关于计算机类论文范文例文,与基于动态合同网的Agent任务分配算法相关论文答辩

时间:2020-07-05 作者:admin
后台-系统-系统设置-扩展变量-(内容页告位1-手机版)

本论文是一篇关于计算机类论文答辩,关于基于动态合同网的Agent任务分配算法相关本科毕业论文范文。免费优秀的关于计算机及算法及数据库方面论文范文资料,适合计算机论文写作的大学硕士及本科毕业论文开题报告范文和学术职称论文参考文献下载。

摘 要:随着应急指挥网络系统规模不断增加,网络故障诊断逐渐成为应急指挥网络系统的关键.针对域间协同故障诊断中的任务分配问题,提出了基于改进合同网的Agent动态任务分配算法,建立了Agent性能库,使管理者根据所注册Agent的性能进行发标,同时,为每个执行Agent完成某项任务建立相应的信息素,实验结果表明,该算法有效地避免了网络的拥塞,提高了任务分解的效率.

关 键 词:协同网络故障诊断;任务分配;合同网算法;蚁群算法

中图分类号:TP393文献标识码:A文章编号:1009-3044(2014)05-0919-03

1概述

随着应急指挥网络系统复杂程度不断提高,系统规模将越来越大.这就造成应急指挥系统中网络的规模越来越大,功能越来越复杂,加之网络攻击技术与计算机病毒,使得网络故障的发生是不可避免的,而且发生的概率会越来越大,网络故障诊断逐渐成为应急指挥系统的关键.目前采用的故障诊断技术及方法无法满足应急指挥系统故障测试与诊断的要求.这时就需要协同故障诊断技术为网络系统提供更完备的综合保障支持.协同故障诊断技术包括任务分解,任务分配和决策融合等环节[1].该文重点研究了其中的任务分配,提出了基于改进合同网的Agent动态任务分配算法,有效地避免了网络的拥塞,提高了协同故障诊断效率.

2动态合同网算法

本文将管理Agent替代合同网算法的管理者,将执行Agent替代合同网算法的承包商完成合同网算法在Multi-Agent协同故障诊断中的应用,如图1所示.

图1合同网在MAS中的应用

传统合同网在MAS中的直接应用缺点较多,该文根据传统合同网算法的缺点提出了一下几点改进:

1)减小管理Agent发标量.建立Agent性能库,使管理者根据所注册Agent的性能进行发标,避免了管理Agent广播标书带来的通信拥塞.

2)与蚁群算法相结合.为每个执行Agent完成某项任务建立相应的信息素,这样就可以形成正反馈,管理Agent就可以根据前期经验进行任务分配.


本文出处 http://www.sxsky.net/benkelunwen/060143065.html

3)任务结果评估.传统合同网算法没有任务结果评估,该文将任务结果评估纳入到合同网算法中来,实现了系统的反馈.

2.1注册Agent性能库

管理者对每个注册Agent的能力都有一个数据库,例如Agenti执行任务j的能力为[Cap(i,j)].有能力执行任务的Agent将其初始能力值设为1,没有能力执行任务的Agent将其初始能力值设为0,这样就以数据库中的表的形式建立了Agent性能库.

设置性能库的本质是为了让管理者能够将任务分配给能够胜任的承包商执行,以减少资源耗费.所以有了注册承包商性能库,就可以根据性能库分发任务,这样就避免了传统合同网算法使用广播带来的通信量大的问题,有效避免的通信拥塞.

在合同网算法里,没有绝对的管理者,也没有绝对的承包商,它们之间是相互转化的,所以每一个有注册承包商的管理者都有性能库,而且性能库分为两部分:一部分为管理部分;另一部分为执行部分(执行部分只有自己的性能),如图2所示.


计算机学术论文撰写与发表
播放:35716次 评论:4629人

基于动态合同网的Agent任务分配算法参考属性评定
有关论文范文主题研究: 关于计算机的文章 大学生适用: 在职研究生论文、硕士毕业论文
相关参考文献下载数量: 93 写作解决问题: 学术论文怎么写
毕业论文开题报告: 文献综述、论文目录 职称论文适用: 职称评定、职称评副高
所属大学生专业类别: 学术论文怎么写 论文题目推荐度: 优质选题

2.2Agent信息素

传统合同网算法在竞标阶段执行Agent只要发现自己符合任务要求就会向管理Agent发送竞标标书,而且管理Agent会对每一个标书进行评估,这样就会导致管理Agent的负载过大,影响整个系统的效率.该文从减小执行Agent投送竞标标书的数量的角度出发,提高了执行Agent的自主性和竞争性,引入蚁群算法的蚂蚁信息素,对可执行任务的Agent进行进一步的寻优.

当管理Agent有一个任务i要进行分配时,将会有若干个执行代理可以执行,所以就引出了最优问题.为了让任务分配趋于最佳合理状态,引入了蚂蚁的信息素,并将蚁群算法中的转移概率公式改进为所需的代理i执行任务j的效果概率公式,如下式.

[Pij(t)等于[τij(t)]α×[Tij(t)]βZcapable[τzj(t)]α×[Tzj(t)]βT(i,j)≠N0Otherwise](1)

其中[Pij(t)]表示t时刻,代理i执行完任务j后,在所有执行代理中的执行效果优劣概率;[τ(i,j)]为t时刻代理i执行任务j的信息素值;capable为能够执行任务j的代理的集合;[T(i,j)]为t时刻代理i执行任务j的执行时间的倒数,即:

[T(i,j)等于1Tc+Td](2)

其中[Tc]为任务的完成时间;[Td]为代理i到代理j的延迟时间,单位毫秒(ms).

依据以上公式(1)算出每一个执行Agent执行任务j的完成优劣的概率,概率越大,该Agent完成任务j的效果就越好.所以本文根据[Pij(t)]的大小选择概率大的执行任务j,这样既保证了任务的完成质量和效率,又减小了系统的通信量和负载.

针对算法中信息素和参数是动态的这一特点,为了保证全局寻优,该文利用轮转赌法选择出来的Agent执行任务.轮转赌法是模仿轮盘转动进行选择[5],如图3所示,将各Agent执行任务完成的优劣概率在赌轮上划分成扇形区域,然后转动轮盘,使其随机转动.当轮盘停止转动时,指针所指向的扇区就是所要选择执行任务的Agent.所以完成优劣概率大,被选中的几率就大.被选中的概率与完成优劣概率成正比.

图3轮转赌法

利用上述的轮转赌法可以选择完成能力优秀的Agent来执行任务j,显著提高了任务完成的效率.如果通过轮转赌法选择的Agent没有完成任务,那么会继续通过轮转赌法选择Agent执行任务,直到任务完成为止.

当任务完成后,会执行对执行任务的Agent信息素进行更新,更新的公式为:[τij(t+Δt)等于1-ρτij(t)+τij(Δt)](3)

[τij(Δt)等于Q(Tc+Td)](4)

其中[τij(t+Δt)]为[(t+Δt)]时刻Agenti完成任务j的信息素值;[τij(Δt)]表示完成任务的Agent信息素增量,初始时刻[τij(Δt)等于0];[ρ(0≤ρ<1)]为信息素挥发系数,[(1-ρ)]表示信息素的残留因子;Q

后台-系统-系统设置-扩展变量-(内容页告位2-手机版)
声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:123456789@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。
后台-系统-系统设置-扩展变量-(内容页告位3-手机版)