模型方面有关论文范例,与基于R软件的金融资产收益波动率建模相关论文查重免费

时间:2020-07-05 作者:admin
后台-系统-系统设置-扩展变量-(内容页告位1-手机版)

本论文是一篇模型方面有关论文查重免费,关于基于R软件的金融资产收益波动率建模相关硕士学位毕业论文范文。免费优秀的关于模型及风险管理及计算机方面论文范文资料,适合模型论文写作的大学硕士及本科毕业论文开题报告范文和学术职称论文参考文献下载。

摘 要:金融资产收益波动率是金融计量分析的核心议题,该文考虑对其建模分析的计算机实现问题.利用R软件的强大计算与绘图功能,给出金融资产收益波动率各个模型的模拟实现以及对实际金融市场数据的各种建模分析.

关 键 词:波动率;R软件;建模分析

中图分类号:F830文献标识码:A文章编号:1009-3044(2014)01-0185-04

现代金融问题的显著特点是不断在金融学内容中引入数量化的理论和方法,最优投资组合、资产波动率建模、金融衍生品定价、金融风险管理等,无一不是现代统计学、数学、计算机技术等知识在金融上的集中体现.因此要使金融数学专业学生能更好地理解掌握现代金融理论的内涵,提高对金融问题的定量化分析能力与水平,适应时展的需要,教师在课堂上不仅要解释清楚各个模型及其背后的原理,更重要的是教会学生如何实现各模型的每一步计算机实现的全过程,训练他们能利用实际金融数据进行建模分析的能力.

金融资产收益波动率是期权定价、风险管理、投资组合分析、交易策略中的关键指标,对其建模分析是金融计量分析的核心议题,其已经贯穿到整个现代金融理论体系中.在马科维兹提出的均值方差投资组合[1]模型中,其将标的资产收益的标准差作为波动率;著名的Black-Scholes期权定价公式[2]中的重要参数[σ]就是标的资产对数收益率的条件标准差;J.P,Man将风险度量制发展成为VaR[3]计算,其考虑就是将条件正态分布的标注差作为风险资产收益率的波动率;更有市场指数的波动率本身也成为一种金融交易产品,如,芝加哥期权交易所的VIX波动指数.二十年来,广大学者关于一元波动率提出了相当丰富的模型,其主要有Engle提出的ARCH模型[4]、Bollersev提出的GARCH模型[5]、Nelson提出的EGARCH模型、Tsay提出的CHARMA模型、Glosten,Jagannathan,Runlele等提出的TGARCH[6]、Jacquier,Polson,Rissi提出的随机波动(SV)模型[7]等.如何有效掌握、利用现代统计计算的高级软件[8]对金融资产收益波动率的科学建模分析已经成为金融数量化分析人才的必备技能之一.

1R语言的优势

对金融资产波动率建模分析涉及到较为复杂的数学与统计理论,计算复杂繁琐,根本不可能由手工完成,往往需要借助于相关的统计计算软件.现代金融计量分析中常用软件有MATLAB、SAS、SPSS、SPLUS、EVIEWS以及R等.其中R软件是一套完整的集数据处理分析、计算和绘图的软件系统,其交互式运行方式使得人们利用它可以非常方便探索复杂数据.R软件具有强大的统计分析与数据可视化功能,相比较于其他语言,其语言比较简单、易懂、编程简便、语法易学、有较多的统计函数;再有,其是自由、免费、源代码公开的软件,各种可以获得的资源丰富;更有是其非常方便加载各种工具包.R软件凭借其有向量、数组、列表等丰富的数据类型丰富以及安装及其方便等许多优点,就非常适合于对金融数据的建模分析的课堂教学工具.

2金融资产收益波动率模型与模拟

金融资产波动率的一个特殊性就是其不可直接观测到,但是通过其收益率序列的一些特征能发现其一些特征,比如波动聚类性、在固定范围内随时间连续变化以及显示杠杆效应等.通常的波动率模型选择主要是基于能反映出其一些特征而设计.

用[rt]表示资产在[t]时刻的收益率,记[Ft-1]为[t-1]时刻已知的信息集,在[Ft-1]下[rt]的条件均值为[μt]及条件方差为[σ2t],其中[μt等于E(rt|Ft-1)],[σ2t等于Var(rt|Ft-1)].对[rt]一般假定为

[rt等于μt+atμt等于i等于1piμt-i-i等于1qθiat-i](1)

由此得到[σ2t等于Var(rt|Ft-1)等于Var(at|Ft-1)],这样对波动率建模主要是描述[σ2t]的模型演变.

2.1ARCH模型

考虑对波动率的条件异方差建模中,ARCH模型是最基本的.具体如下:

[at等于σtetσt等于α0+i等于1pαia2t-i](2)

其中[et]是个均值为0,方差为1的独立同分布随机变量序列,[α0>0,αi≥0,p]为某一正整数.现在模拟1100个AR(1)-ARCH(1)模型的数据,其中条件均值方程中各个参数设置为[μ等于0.1,等于0.8],条件方差中各参数设置为[α0等于1,α1等于0.95],R程序代码如下:

#################

#AR(1)-ARCH(1)模型模拟

n等于1100

e等于rnorm(n)

a等于u等于e

sig2等于e^2

alpha0等于1

alpha1等于0.95

phi等于0.8

mu等于0.1

for(iin2:n)

{

sig2[i+1]等于alpha0+alpha1*a[i]^2

a[i]等于sqrt(sig2[i])*e[i]

u[i]等于mu+phi*(u[i-1]-mu)+a[i]

}

plot(e,type等于"l")

plot(a,type等于"l")

plot(u,type等于"l")

#################

2.2GARCH模型

基于ARCH模型简单性,实际应用中被广泛采用,但是一般需要比较高的阶数才能较好地反映资产收益波动率的性态.Bollerslev于1986年提出了其一个有用的推广形式,称为GARCH模型.具体模型为:[at等于σtetσt等于α0+i等于1pαia2t-i+j等于1qβjσ2t-j](3)

其中[et]是个均值为0,方差为1的独立同分布随机变量序列,[α0>0][αi≥0,βj≥0,i,j(αi+βj)<1,p,q]为某一正整数.

利用fGarch包,调用garchSpec与garchSim函数同样模拟10000个ARMA(1,1)-GARCH(1,1)模型的数据,其中条件均值方程中各个参数设置为[1等于0.3,2等于0.4,θ1等于0.6,θ2等于0.7,],条件方差中各参数设置为[α0等于1.5],[α1等于0.4,]

[β1等于0.3],其相关的R程序代码如下:运行程序得到模拟收益率序列如图1所示.

###########################

#带ARMA(1,1)-GARCH(1,1)的模拟与估计

library(fGarch)

spec1等于garchSpec(model等于list(ar等于c(0.3,0.4),ma等于c(0.6,0.7),alpha0等于1.5,alpha1等于0.4,beta1等于0.3))

armagarch11等于garchSim(spec1,n.start等于500,n等于10500)

plot(armagarch11,main等于"Seriesgarch11")

###########################

2.3APARCH模型

金融资产收益率序列有时表现出较大的负收益比相同幅度的正收益引起更大的波动,这个被称为杠杆效应.普通的GARCH模型不能体现出这个特性,为了反映出这种特性.Ding,Granger和Engle于1993年提出了APARCH模型.其数学表达式如下:

[at等于σtetσδt等于α0+i等于1pαiat-i-γiat-1δ+j等于1qβjσδt-j](4)

其中[et]是个均值为0,方差为1的独立同分布随机变量序列,[α0>0][αi≥0,βj≥0,δ>0,-1<γi<1,i=1,2,…,p].当[δ=2],[γ1=γ2=…=γp=0]时就是标准的GARCH模型.

3实证分析

收集上证综合指数(证券代码为000001)2011年至2013年9月30日共664个交易日收盘价价格序列,计算得到其对数收益率序列如图2所示,然后对该序列分别进行ARCH(2)、GARCH(1,1)-N、GARCH(1,1)-T、AR(1)-APARCH(1,1)建模,估计出各种模型的各个参数,结果如表1所示.表1中的[μ]值相差较

1 2

模型方面有关论文范例,与基于R软件的金融资产收益波动率建模相关论文查重免费参考文献资料:

本科生怎么写论文

北大自考本科难吗

本科论文毕业设计

本科毕业论文选题

自学考试本科论文

部队函授本科

历史本科自考

本科毕业论文 大纲

本科毕业优秀论文

本科毕业论文绪论

后台-系统-系统设置-扩展变量-(内容页告位2-手机版)
声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:123456789@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。
后台-系统-系统设置-扩展变量-(内容页告位3-手机版)