小学生数学与生活小论文

时间:2021-07-08 作者:stone
后台-系统-系统设置-扩展变量-(内容页告位1-手机版)

导语:都说文字是表达感情的工具,其实只要自己感兴趣,数学也能够很好表达生活中以及学习上的情绪。下面小编将为大家整理提供小学生数学与生活小论文。欢迎大家阅读。

小学生数学与生活小论文一

大千世界,数学无处不在。真的,只要你留心观察,善于动脑,你就觉得自己好像置身于数学的海洋。是的,数学无处不在,这个假期,我就深深地感到了这一点。

我的肚子莫名其妙地奏起了狂响曲,“好饿啊——”我呻吟道。“来,吃个苹果吧!”还是妈妈好,“但是……”“但是什么?吃个苹果,哪有什么但是啊?”我笑问道,伸手向一个又大又红的苹果抓去。谁知,妈妈一把抓住苹果,夺了过去,神秘兮兮的。我一脸茫然,妈妈这是卖哪门子的药啊?我不耐烦了“妈,别闹了,还让不让人吃啦?”妈妈还是微笑着,洗起苹果来“吃,谁说不让你吃啦,我这不是洗了吗?”“哦!”我还是一脸疑惑。“但是,我还是有一个要求。”终于说出来了,我就知道不对劲了吗。“什么要求啊?”我有点生气了,不就是吃一个苹果嘛,怎么有那么多要求啊。“你不是学过体积了吗?”“是啊,怎么了?”这根吃苹果有关吗?我心想。“那你能不能把数学知识,带到生活中去,算算这个苹果的体积呢?”妈妈又笑了笑,好像小瞧我似的,我的心里升起了一股力量,恩,我一定要做给你看!一定!

于是,我赶忙把这个令人馋涎欲滴的红苹果,拿在手里,琢磨起怎样算体积来。苹果既不是长方体,也不是正方体,更不是圆柱体,怎么算它的体积呢?我摆来摆去,没有头绪了,此时的肚子还在咕咕作响,我可不能不遵守承诺,就吃了呀,我可不能让妈妈瞧不起我呀,加油,一定还有什么好方法。于是我又鼓起勇气,忍住饥饿,继续埋头考虑起来。

过了一会儿,我终于豁然开朗,我不能用量杯,先在里面装些水,记下水位。随后把那个苹果放入水中,此时的水位上升了不少,再记下上升后的水位。最后用上升后的水位,减去先前的水位,不就算出苹果的体积了吗?我高兴极了,向妈妈汇报了实验结果,妈妈这回是满意的笑了。

我大口地啃着苹果,这正是最甜美的食物!

数学无处不在,你说是吗?

小学生数学与生活小论文二

“你碰到问题就不会自己想一想再问吗?!”妈妈火冒三丈。哎呀,谁叫我这个头脑不是数学头脑呢?做难一点的题目就开始问这问那,唉,还是自己想想吧!

我呆呆地望着这道数学题:同学们去植树,如果每人栽8棵,则少7棵树;如果每人栽7棵,则多出8棵树,问有多少个学生?他们一共要植树多少棵?讨厌,又是盈亏问题,这奥赛快乐训练就不能出些别的题吗?但是气归气,到头来不还是要做吗?这道题有两种方案,每人栽8棵和每人栽7棵,这样每人少栽1棵,原来的少7棵就变成多8棵两种分配总差额是:7+8=15(棵),诶,这样接下来的步骤不就和前面的例题一样了吗?先根据方案找出个体差,再根据结果找出总差,然后求出总差中包含个体差的个数,最后根据数学公式:总差额÷个体差=个数来求出结果。这道题也可以运用这个公式啊。得到:

学生:(7+8)÷(8-7)=15(个)

树:8×15-7=113(棵)或者15×7+8=113(棵)

答案不就出来了吗?有15个学生,一共要植树113棵。

这认真想,还就有了思路和兴趣了,我便“唰唰唰”地往下做:鼓号队同学排队,如果每行站8人,则多24人;如果每行站9人,则多4人,问一共站多少行?有多少个学生?同样的思路,求出两种分配的总差额为24-4=20(人),再运用公式得到:

行数:(24-4)÷(9-8)=20(行)

学生:20×8+24=184或者20×9+4=184(人)

我越做越高兴,自己能解出这么多难题,并得到一个重要的公式:总差额÷个体差=个数,以后可以更好的运用来解难题。

做着做着,我渐渐悟到:其实做难题并不难。

小学生数学与生活小论文三

数学俗称“开发脑子的工具”,它无处不在,比方说在学习上,在生活中…~~

——题记

一次,爸爸妈妈外出买衣服,我一个人在家,这可了坏了我这个“滑头”。我蹑手蹑脚的走到电脑旁,开启电脑,本想在“网”里“畅游”一番,可我这个聪明老爸早就知道我这招,便在电脑上设了密码!唉!怎么办呢?只能碰碰运气是一下啦。可我左试右试,每次都不行。

正想关电脑时,突然看到屏幕上有一个“提示”,我一看是一道算式“2005÷2006分之2005

等于多少”我蒙了,可为了打电脑,只能拿起演算纸,动起脑筋:

如果把它化成假分数,那就太麻烦了……。突然,我想起奥数老师曾说过:“一个分数除法算式中,除数是带分数时是不能拆开的,但可以化成假分数,在化成假分数时如果数字大,分子可以不算出来,用两个数相乘的算式表示!”那不就成了,直接:

=2005÷2006分之2005×2006+2005

=2005÷2006分之2005×2007

=2005×2005×2007分之6

=2007分之2006

啊!终于算出来了!在我伸懒腰时,脑子里又有一个“亮点”,也可以反过来用2005又2006分之2005:

=1÷(2005又2006分之2005÷2005)

=1÷(2005÷2005+2006分之2005÷2005)

=1÷1又2006分之1

=2007分之2006

哈!我用两种方法算了出来,正想把正确答案输上去,可门去却开了!唉…

可这一次虽没有玩的着电脑,但却也让我在无意中锻炼了自己,也想告诉大家:世上无难事,只怕有心人。只要自己沉下心来,静静思考,不放过任何一个线索,每一道难题也会迎刃而解。不要说自己智商差,不要畏惧难题,只要仔细读题,认真思考,你也可以是100分!

小学生数学与生活小论文四

大千世界,无奇不有,如果你做一个有心人,并且善于总结,总能发现它们之间的相互规律。这不,今天,我在做课外习题时,就有了下面一个小发现。

最近,老师刚给我们讲解了有关等差数列的计算方法,其中最典型的例子为:1+2+3+4+5……+97+98+99+100=?老师讲解的算法为:1+2+3+4+5……+97+98+99+100=(1+100)*100/2=5050,当时,我觉得自己已经听懂了,心想以后碰到这类题目我也可以做了。

但是,在做到具体习题时,事情的发展并不如我想象的那么简单。今天,我在做习题时就遇到了一只“拦路虎”:1-3+5-7+9……-1999+2001=?

咋一看到这道题目,我首先就懵住了,后来,强迫自己冷静下来认真思考,终于理出了一点头绪:这是等差数列,要求出答案,只要把加的部分和减的部分求出,再求差就行了,即,1-3+5-7+9……-1999+2001

=(1+5+9+……+2001)-(3+7+……+1999)

但是,在计算1+5+9+……+2001,以及3+7+……+1999时我犯了难,因为它与老师的例题不相同,此时,我才感觉自己没有真正理解老师讲授的方法,于是我不得不重新学习老师的例题,并竭力回忆老师讲解的过程:1+2+3+4+5……+97+98+99+100=(1+100)*100/2=5050中,该公式的基本算法应该为:(首项+末项)*数列个数/2;对于从1开始的并且数列之间的差为1的数列而言,其数列个数为最大的数,那么,对于不是从1开始,并且数列之间的差不是1的数列如何计算数列的个数呢?我陷入了迷茫之中。

这时,爸爸进来了,见我在思考问题,便也加入进来。爸爸循序渐进的启发我:

1)1、2、3、4…·8、9、10总共有几个数?

2)2、3、4…·8、9、10总共有几个数?

3)0、1、2、3、4…·8、9、10总共有几个数?

4)2、4、6、8、10总共有几个数?

5)6、8、10总共有几个数?

在我计算出结果后,爸爸又要求我分析它们之间的规律,并用公式来表达计算结果:

经过好一会儿的脑力激荡,我终于理清了头绪,找出了计算数列个数的基本公式:即,

数列个数=(末项-首项+差)/差,

采用该公式,可以验算上面几道题的计算结果:

1)1、2、3、4…·8、9、10的个数=(10-1+1)/1=10

2)2、3、4…·8、9、10的个数=(10-2+1)/1=9

3)0、1、2、3、4…·8、9、10的个数=(10-0+1)/1=11

4)2、4、6、8、10的个数=(10-2+2)/2=5

5)6、8、10的个数=(10-6+2)/2=3

这样等差数列和的计算公式可以改写成:

等差数列的和=(首项+末项)*[(末项-首项+差)/差/2]

于是,习题答案很快就计算出来了:1-3+5-7+9……-1999+2001

=(1+5+9+……+2001)-(3+7+……+1999)

=(1+2001)*[(2001-1+4)/4/2]-(3+1999)*[(1999-3+4)/4/2]

=2002*[2004/8]-2002*[2000/8]

=1001。

做题目时,只要肯思考,任何题目都会迎刃而解。

小学生数学与生活小论文五

我每次做数奥都是拿起一道题拉起来就做,因为我觉得这样做起来很快。可是今天做数奥时,有一道题改变了我的看法,做得快不一定是做得对,主要还是要做对。

今天,我做了一道题目把我难住了,我苦思冥想了好几个小时都没有想出来,于是我只好乖乖地去看基础提炼,让它来帮我分析。这道题目是这样的:求3333333333的平方中有多少个奇数数字?分析是这样的:3333333333的平方就是3333333333×3333333333,这道乘法算式由于数字太多使计算复杂,我们可以运用转化的方法化繁为简,也就是把一个因数扩大3倍,另一个因数缩小3倍,积不变。使题目转化为求9999999999×1111111111=(10000000000-1)×1111111111=11111111110000000000-1111111111=11111111108888888889因此,乘积中有十个奇数数字。这道题,我们还可以位数少的两个数相乘算起,就能发现积中奇数的数字个数。即3×3=9→积中有1个奇数数字。33×33=1089→积中有2个奇数数字。333×333=110889→积中有3个奇数数字。3333×3333=11108889→积中有4个奇数数字。……

从上面试算中,容易发现积是由1,0,8,9四个数字组成的,1和8的个数相同,比一个因数中的3的个数少1,0和9各一个,分别在1和8的后面。积中奇数的数字个数与一个因数中3的个数相同,可以推导出原题的积是:11111111108888888889,积中有10个奇数数字。

做了这道题,我知道做数奥不能求快,要求懂它的方法。

[小学生数学与生活小论文]相关文章:

1.数学与生活小论文小学生

2.小学生数学与生活小论文怎么写

3.数学与生活(小论文)精选

4.生活中的数学小论文

5.关于数学与生活小论文

6.关于生活的数学小论文

7.数学与生活小论文500字

8.小学生的数学小论文

9.数学与生活小论文四年级

10.数学与生活的小论文大全

后台-系统-系统设置-扩展变量-(内容页告位2-手机版)
声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:123456789@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关推荐

八年级下册数学小论文

数学源于生活,需要我们去认真去体会。小编整理的八年级下册数学小论文,希望大家喜欢。 八年级下册数学小论文1[摘要]:一位优秀的教师懂得如何去激励学生,调动学生的积极性、主动

后台-系统-系统设置-扩展变量-(内容页告位3-手机版)