小学数学概念教学与思维训练概念是事物本质属性在人们头脑中的反映。小学数学中反映数和形本质属性的数字、图形、符号、名词术语和定义、法则等都是数学概念。小学数学概念教学与学生的思维发展有着密切的关系。教学时,教师不仅要使学生正确、清晰、完整地理解数学概念,而且要在概念的引入、形成、深化过程中,重视对学生进行思维训练。
一、在引入概念时训练学生的形象思维
形象思维以表象和想象为基本形式,以观察、实验、联想、类比、猜想等为基本方法。在数学概念引入时,教师应从学生的生活实际入手,充分运用实物、教具、图表等直观教具,以及动手操作等直观手段,帮助学生获得正确、完整、丰富的表象,训练学生的形象思维。
例如“面积”的概念,可通过引导学生观察黑板、桌子、课本等实物的面引入,还可以引导学生用小刀剖开萝卜观察它的截面,让学生亲眼看一看,亲手摸一摸引入。通过多种感官的协同活动,使面积的具体形象在学生头脑中得到全面的反映。
又如教学“除法的'初步认识”,一位教师先让学生分小棒:每人拿出8根小棒,把它们分成两排,看有几种分法。教师适时把他们的不同分法展示出来:
然后启发学生观察比较:这四种分法有什么相同?有什么不同?从而引出“平均分”。
这样引入概念,符合小学生掌握概念的认知规律:即从外部的感知开始,通过一系列外部操作活动和内部智力活动,把感性材料和生活经验化为概念。
二、在概念的形成中训练学生的抽象思维
抽象思维是用抽象的方式对事物进行概括,并凭借抽象材料进行的思维活动。它以概念、判断、推理为基本形式,以分析与综合,比较与分类,抽象与概括、归纳与演绎为基本方法。数学抽象思维能力指的是理解、掌握和运用数学概念与原理的能力。
在小学数学概念形成过程中,要及时把概念从具体引向抽象,抓住实质,排除个别实例对全面理解和运用概念的干扰,使学生充分了解概念的内涵和外延。
例如,一位教师教学“长方体和正方体的认识”时,在指导学生给不同形体的实物分类引入“长方体”和“正方体”的概念后,及时引导学生先把“长方体”或“正方体”的各个面描在纸上,并仔细观察描出的各个面有什么特点,再认识什么叫“棱”?什么叫“顶点”,然后,指导学生分组填好领料单,根据领料单领取“顶点”和“棱”,制作“长方体”或“正方体”的模型,边观察边讨论,长方体与正方体的顶点和棱有什么特点,最后指导学生自己归纳、概括出“长方体”和“正方体”的特征。从而使学生充分了解“长方体”和“正方体”这两个概念的内涵和外延。这样,既使学生掌握了“长方体”、“正方体”概念的本质属性,又训练了抽象思维。
三、在深化概念中训练学生思维的深刻性
学生数学思维的深刻性集中表现在善于全面地、深入地思考问题,能运用逻辑思维方法,思考与问题有关的所有条件,抓住问题的实质,正确、简捷地解决问题。在深化概念的教学中,可从以下两方面训练学生思维的深刻性。
一是在学生理解和形成概念之后,要引导他们对学过的有关概念进行比较、归类。既要注意概念间的相同点和内在联系,把有关概念沟通起来,使其系统化,又要注意概念之间的不同点,把有关概念区分开来。从而使学生逐步加深对概念内涵和外延的认识,深入理解概念。例如学习了“比”的概念后,可设计下表引导学生弄清“比”、“除法”、“分数”这三个概念之间的联系与区别。名称举例相互关系区别
比2:3前项:(比号)后项比值两个数的关系除法2÷3被除数÷(除号)除数商一种运算分数2/3分子──(分数线)分母分数值一个数
二是在运用数学概念解决问题的过程中,要引导学生识别数学概念的各种变式,从变化中抓概念的本质。例如,学生认识了“直角”后,教师,出示不同位置的直角(如下图),让学生判断:
这些角是不是直角,并用三角板上的直角进行检验。从而排除干扰,突出直角的本质属性,训练学生思维的深刻性。
小学教学概念的掌握与数学思维的训练是相辅相成的。不依赖于数学思维,不可能学好数学概念;正确的数学概念教学,又有助于数学思维能力的提高。在概念教学实践中,教师要有意识地把训练学生的数学思维方式、品质、能力和方法贯穿在概念教学的各个环节之中。