高职数学模块式教学研究与探索论文

时间:2021-06-09 作者:stone
后台-系统-系统设置-扩展变量-(内容页告位1-手机版)

摘要:高职数学教学应体现“以应用为目的,以必需、够用为度”的原则,体现“服务专业、注重应用、更新计算技术、全面育人”的特点和要求,应进行相关的模块教学,以更好地提高教学效率,加强应用,更好地服务于专业。

关键词:高职数学;模块式教学;职业能力

高职数学教学现状分析

高职数学对学生后续专业课的学习和综合数学能力的培养至关重要。然而,由于高职教育在我国起步较晚,而同时又发展迅猛,在教学方面还未形成完整的教学体系,大多沿用传统的教学模式,即:教师讲→学生听→做题→复习→考试,教学内容都是一些老面孔,与专业结合不密切。这与当前高职数学教育的培养目标严重不符,主要表现在以下几方面。

教育观念落后,难以适应时代发展传统数学教育观以“知识本位”为中心,重理论轻实践,忽视专业需要。高职教育的人才培养模式不同于普通高等教育,要求教学内容体现“以应用为目的,以必需、够用为度”的原则,体现“服务专业、注重应用、更新计算技术、全面育人”的特点和要求。因此,教育观念应由“知识本位”转变为“能力本位”。

教学内容陈旧,难以满足专业需要随着高职教育改革的推进,各院校都加强了专业教学建设,增加了大量专业实训,压缩了基础课教学时数,这就造成了数学课教学内容多、课时少的矛盾。同时,在课程体系上过多考虑数学学科的完整性,在教学内容上满足于逻辑上的严谨、计算上的精确,面面俱到,脱离高职各专业人才培养目标,服务性功能不足。因此研究各专业对数学的需求,更好地与专业相衔接,进行工科、经管类、信息类等专业模块教学势在必行,创新高职数学教学模式刻不容缓,为此应进行必要的探索研究,以更好地适应高职教学,更全面提升学生的专业能力、社会能力及综合职业能力。

学生学习积极性不高,学习效率不容乐观随着高校扩招,学生质量急剧下降,特别是高职院校学生的数学基础更是薄弱,很大一部分学。觉得学数学就是为了考试,是没得选择的无奈之举,以后根本用不上。基础本身就不好再加上这种消极的态度,导致学生学习积极性不高,另外,大学的学习毕竟不同于高中,使得很多学生不会学习,学习效率可想而知。

建立合理的教学内容体系

优化教学内容,进行专业模块教学高等职业教育的目的是提高国民科学文化素质,为经济建设和社会发展培养第一线技术应用型的高等职业技术人才。所以,高职数学教学内容要体现“服务专业、注重应用、更新计算技术、全面育人”的特点和要求,为学生打下较为扎实的数学基础,为未来发展提供有力的知识支撑。为此,应将高职数学分为公共基础模块、专业基础模块以及应用拓展模块,其中公共基础模块由一元微积分和数学实验组成;专业基础模块包括多元微积分、常微分方程、向量和空间几何、级数、布尔代数以及线性代数和概率;应用拓展模块主要是用数学建模案例来反映数学来源于生活,又回归于生活,强调应用性。工科、经管类、信息类三大类结合调研进行合理选块。工科教学的专业模块为多元微积分、常微分方程、级数以及线性代数等;经济管理类专业模块为二元微积分、线性代数、概率等;信息类的专业模块为布尔代数、矩阵行列式、概率、图论基础等。

加强高职数学与专业课的联系实施模块式教学对教师的能力和素质提出了更高的要求。由于数学教师对高职各专业知识了解有限,与专业教师缺乏沟通,且不同专业又有着不同的问题,为此数学教师必须去面对专业知识问题,认真听取专业教师对数学课程、内容、范围的要求和建议,针对不同专业搜集相关典型案例,为提高数学教学质量提供有力依据。例如,经济类专业的学生,在今后的工作中很少接触到曲线的凹凸性及函数图形的描绘、变力作功、液体静压力等问题,完全没有必要花很多时间来学习这些内容,而要把重点放在今后工作中经常接触的单利、复利、税收、最小投入、最大收益、最佳方案等知识点上,这样更实用、更有价值。而线性代数与计算机原理有直接的联系,计算机专业的学生应把这方面的知识作为重点。同时,直接选取专业课程的相关内容作为例题、习题讲解和练习,对内容拓宽和深化,强调知识应用可起到积极的作用。通过反复学习,学生得以反复记忆,进而熟练掌握,这更有利于所培养的人才能够胜任其岗位职责,为用人单位创造良好效益。让学生看到学习数学能够应用于实际,更有利于激发学生的学习兴趣。当然,在具体操作时,要做到:

1.由传统的“面向定义”转变为“面向问题”的新型教学模式,进行问题驱动教学。删去那些繁琐的计算与复杂的推理过程,遵循实践——认识——再实践—再认识的过程,加强对数学本质的理解,自觉应用数学解决实际问题,提高学生的数学能力和职业能力。例如,函数作为过渡性衔接内容可少讲,只需重点介绍分段函数、复合函数等,空间解析几何是多元函数微分学的预备知识,加之学生在中学已接触过,可略讲;导数与微分中重点介绍导数,微分则利用导数即微商这一关键点略讲。

2.教师应有意识地收集与各专业教学内容相关的案例,尽可能多地将数学与工程学、经济学、生态学、社会学、军事学等领域联系起来,展现高等数学的巨大魅力。例如,在生活实际中建立微分方程模型是比较难的,在介绍微分方程时可以举抵押贷款买车买房问题、人口增长等多个例子。这些不但让学生了解了数学的巨大作用,而且能大大提高学生的学习兴趣。此外,教师还应介绍与教学内容相关的数学知识和最新前沿动态,帮助学生更好地学习。

3.重视思想方法的教学。在高等数学教学过程中,教师应当对课程中蕴含的一些数学方法加以阐述,例如类比、演绎、递推、构造、换元、化归、建模等方法,这对深化学生知识,提高学生分析问题、解决问题的能力,增强学生的整体素质有着重要作用。就拿建模来说,一切数学概念和知识都是从现实世界的各种模型中抽象出来的,利用建模思想进行教学是理论与应用相结合的重要手段。传统的高等数学教学也强调从实际问题出发,建立模型,再引入概念和方法。笔者认为,数学教学中贯彻建模思想,应强调量的差异,应举更多有实际意义的例子,贯彻数学建模思想,是将解决问题思想贯彻到每个环节,而不只是用做某些部分的引入手段。

教学方法和手段的改进

充分利用网络资源利用网络教学平台,可以实现信息资源和设备资源的共享,为学生提供多层次、多方位的学习资源。例如使用讲义课件、网上答疑、题库、数学软件、数学文化、数学论坛等,对教师和学生之间的交流会有很大的促进。而且网络教学可随时进行,每个学生都可以根据自己的实际情况来确定学习时间、内容和进度,避免选修课与必修课在上课时间上可能出现的冲突,还可以根据学生个人的实际情况提优补弱。网络技术促进了教学的自主化、互动化,使数学教学更现代化,更适应信息时代的要求。

合理运用网络教学多媒体教学是一种先进的教学手段,一种崭新的教学元素,这种教学信息量大,形象直观,特别是涉及图形教学,它富有动感。像定积分的概念教学时,用多媒体可以清晰地观察出分割、取近似等每一步过程,使学生一目了然,易于接受。但有了多媒体,我们不能不加选择地应用,像求导、积分等计算用传统的“黑板+粉笔”,学生更能明白解题的思路、过程。总而言之,要合理选择,两者结合,以更好地提高教学效率。

充分利用数学软件高职现有的教学模式大多是以教师讲授为主,学生被动学习。在教师讲解后学生反复练习、训练,对学生而言其实是一种浪费。一是学生就业后用到纯数学的知识很少,用到的只是数学的精神、思维方法等;二是在信息时代,大量的数学计算、画图等用手工操作太费时费力,而用数学软件可以达到事半功倍的效果。为此,要详细介绍教学所使用的软件Mathematica和Matlab,把运用数学软件包求解数学问题能力的培养融入教学中,使学生学会利用数学软件求导数、积分、解微分方程等复杂的运算。通过数学实验教学,可以达到使学生由“学数学”向“用数学”的转变,更新计算技术,减少大量的繁琐计算,有利于激发学生的学习兴趣,提升应用能力。

全面改革考试评价方式

高职数学除了提高学生综合数学能力外,主要是为专业服务,传统考核方式已不适应现代职业教育的发展。通常的限时考试使学生机械地套用定义、定理和公式,不利于培养学生的创新意识和实际应用能力,也不能真正地检查和训练学生对知识的理解程度,会使较多的学生越来越对数学产生恐惧、厌烦心理,为考试而考试,与我们的教学出发点相违背。目前我校学生的数学成绩由平时25%、期中闭卷考25%、期末50%三部分组成。平时成绩,包括平时作业、提出问题、上课发言、上课出勤率等,另外两块都打出具体分数。笔者认为,考试评价制度应进行改革,高职教育的考核方式应灵活多样。由平时成绩、数学实验(数学软件应用)和闭卷考试三块组成比较合理。平时除了作业情况、学习态度等之外,还可结合小论文的形式,数学论文由教师事先设计好题目。例如对经济管理类专业可设置与单利、复利、税收、边际成本、边际收益、最小投入与最大收益、最佳方案、概率、统计等有关的问题,要求写出调查报告或论文,学生可根据需要查找相关资料,并对计算结果进行数据分析,结合实际给出可行性建议,最后以论文的形式上交评分。数学实验主要就是上机情况,看学生对数学软件掌握得如何,便于今后进一步的应用。期末闭卷考试这部分以考核学生基本概念、基本计算能力为主。这种考核方式有利于帮助学生端正数学学习态度;有利于培养学生运用所学知识解决现实问题的主动性和创造性;有利于培养学生的自学能力、创新能力,能比较全面地反映学生的综合数学能力,同时又能为后续的专业学习打下基础。

数学既是一种思维方式,也是一种重要工具;数学不仅是一门科学,也是一种文化;数学不仅是一些知识,也是一种素质。在高职数学教学中引入模块式教学是职业教育教学的一种创新,体现以能力为核心,具有较强的实用性、针对性和灵活性。与专业结合的模块式教学改革是大势所趋,当然,如何更好地进行高等数学的模块式教学改革仍然任重而道远。

参考文献:

[1]许景彦,吴素敏,王风莉.试谈高职数学教学模式的创新[J].教育探索,2007,(6).

[2]陶金瑞,霍凤芹.对高职数学教学改革的探索[J].成都大学学报,2007,(6).

[3]云连英.高等数学课程设置研究[M].杭州:浙江大学出版社,2008,(6).

后台-系统-系统设置-扩展变量-(内容页告位2-手机版)
声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:123456789@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。
后台-系统-系统设置-扩展变量-(内容页告位3-手机版)