应用数学与数学建模篇一:数学建模发展历史及意义
数学建模的发展历史及意义................................................................................2
摘要....................................................................................................................2
1引言.....................................................................................................................3
1.1背景.........................................................................................................3
1.2应用.........................................................................................................3
2发展历史.............................................................................................................3
2.1西方发展情况..........................................................................................3
2.2中国发展情况.........................................................................................4
2.3建模竞赛发展历史.................................................................................4
2.3.1是一种模拟,是用数学符号、数学式子、程序、图形等对实际课题本质属性的抽象而又简洁的刻划,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略。数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识。这种应用知识从实际课题中抽象、提炼出数学模型的过程就称为数学建模(MathematicalModeling)。
1.2应用
数学是研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和各种各样的应用问题紧密相关的。数学的特点不仅在于概念的抽象性、逻辑的严密性、结论的明确性和体系的完整性,而且在于它应用的广泛性。自从20世纪以来,随着科学技术的迅速发展和计算机的日益普及,人们对各种问题的要求越来越精确,使得数学的应用越来越广泛和深入,特别是在21世纪这个知识经济时代,数学科学的地位会发生巨大的变化,它正在从国家经济和科技的后备走到了前沿。经济发展的全球化、计算机的迅猛发展、数学理论与方法的不断扩充,使得数学已经成为当代高科技的一个重要组成部分和思想库,数学已经成为一种能够普遍实施的技术。培养学生应用数学的意识和能力已经成为数学教学的一个重要方面。数学建模应用就是将数学建模的方法从目前纯竞赛和纯科研的领域引向商业化领域,解决社会生产中的实际问题,接受市场的考验。可以涉足企业管理、市场分类、经济计量学、金融证券、数据挖掘与分析预测、物流管理、供应链、信息系统、交通运输、软件制作、数学建模培训等领域,提供数学建模及数学模型解决方案及咨询服务,是对咨询服务业和数学建模融合的一种全新的尝试。
2发展历史
2.1西方发展情况
数学建模是在20世纪60和70年代进入一些西方国家大学的,中国的几所大学也在80年代初将数学建模引入课堂。经过20多年的发展,绝大多数本科院校和许多专科学校都开设了各种形式的数学建模课程和讲座,为培养学生利用数学方法分析、解决实际问题的能力开辟了一条有效的途径。
大学生数学建模竞赛最早是1985年在美国出现的,***年在几位从事数学
建模教育的教师的组织和推动下,中国几所大学的学生开始参加美国的竞赛,而且积极性越来越高,近几年参赛校数、队数占到相当大的比例。可以说,数学建模竞赛是在美国诞生、在中国开花、结果的。
2.2中国发展情况1992年由中国工业与应用数学学会组织举办了10个城市的大学生数学模型联赛,74所院校的314队参加。教育部领导及时发现、并扶植、培育了这一新生事物,决定从1994年起由教育部高教司和中国工业与应用数学学会共同主办全国大学生数学建模竞赛,每年一届。十几年来这项竞赛的规模以平均年增长25%以上的速度发展。
2009年全国有33个省/市/自治区(包括香港和澳门特区)1137所院校、15046个队(其中甲组12276队、乙组2770队)、4万5千多名来自各个专业的大学生参加竞赛,是历年来参赛人数最多的(其中西藏和澳门是首次参赛)。
2.3建模竞赛发展历史2.3.1美国大学生数学建模竞赛
美国大学生数学建模竞赛[4](含交叉学科竞赛)是由美国自然科学基金协会和美国数学与数学应用协会共同主办,美国运筹学学会、工业与应用数学学会、数学学会等多家国际机构协办的唯一一项国际性建模竞赛。竞赛要求3个以下本科未毕业学生在4天时间内用数学建模及其他知识解决一个具体的社会工程问题,用英语提交论文。
2.3.2全国大学生数学建模竞赛
全国大学生数学建模竞赛[2]由国家教育部高教司和中国工业与应用数学学会共同主办。竞赛题目一般来源于工程技术和管理科学等方面经过适当简化加工的实际问题,不要求参赛者预先掌握深入的专门知识,只需要学过普通高校的数学课程完成一篇包括模型的假设、建立和求解,计算方法的设计和计算机实现,结果的分析和检验,模型的改进等方面的论文(即答卷)。竞赛评奖以假设的合理性、建模的创造性、结果的正确性和文字表述的清晰程度为主要标准。
全国统一竞赛题目,采取通讯竞赛方式,以相对集中的形式进行;竞赛一般在每年9月初的三天内举行(为保证大家尽量少的耽误课程,所以一般包括周末的两天);大学生以队为单位参赛,每队3人及1个老师作为辅导,专业不限。
应用数学与数学建模篇二:数学建模的作用意义
数学建模的背景:
人们在观察、分析和研究一个现实对象时经常使用模型,如展览馆里的飞机模型、水坝模型,实际上,照片、玩具、地图、电路图等都是模型,它们能概括地、集中地反映现实对象的某些特征,从而帮助人们迅速、有效地了解并掌握那个对象。数学模型不过是更抽象些的模型。
当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子(称为数学模型),然后用通过计算得到的模型结果来解释实际问题,并接受实际的检验。这个全过程就称为数学建模。
近半个多世纪以来,随着计算机技术的迅速发展,数学的应用不仅在工程技术、自然科学等领域发挥着越来越重要的作用,而且以空前的广度和深度向经济、金融、生物、医学、环境、地质、人口、交通等新的领域渗透,所谓数学技术已经成为当代高新技术的重要组成部分。
不论是用数学方法在科技和生产领域解决哪类实际问题,还是与其它学科相结合形成交叉学科,首要的和关键的一步是建立研究对象的数学模型,并计算求解。人们常常把数学建模和计算机技术在知识经济时代的作用比喻为如虎添翼。
数学建模日益显示其重要作用,已成为现代应用数学的一个重要领域。为培养高质量、高层次人才,对理工、经济、金融、管理科学等各专业的大学生都提出“数学建模技能和素质方面的要求”。
数学建模在现代社会的一些作用
(1)在一般工程技术领域,数学建模仍然大有用武之地。在以声、光、热、力、电这些物理学科为基础的诸如机械、电机、土木、水利等工程技术领域中,数学建模的普遍性和重要性不言而喻,虽然这里的基本模型是已有的,但是由于新技术、新工艺的不断涌现,提出了许多需要用数学方法解决的新问题;高速、大型计算机的飞速发展,使得过去即便有了数学模型也无法求解的课题(如大型水坝的应力计算,中长期天气预报等)迎刃而解;建立在数学模型和计算机模拟基础上的CAD技术,以其快速、经济、方便等优势,大量地替代了传统工程设计中的现场实验、物理模拟等手段。(2)在高新技术领域,数学建模几乎是必不可少的工具。无论是发展通讯、航天、微电子、自动化等高新技术本身,还是将高新技术用于传统工业去创造新工艺、开发新产品,计算机技术支持下的建模和模拟都是经常使用的有效手段。数学建模、数值计算和计算机图形学等相结合形成的计算机软件,已经被固化于产品中,在许多高新技术领域起着核心作用,被认为是高新技术的特征之一。在这个意义上,数学不再仅仅作为一门科学,它是许多技术的基础,而且直接走向了技术的前台。国际上一位学者提出了“高技术本质上是一种数学技术”的观点。
(3)数学迅速进入一些新领域,为数学建模开拓了许多新的处女地。随着数学向诸如经济、人口、生态、地质等所谓非物理领域的渗透,一些交叉学科如计量经济学、人口控制论、数学生态学、数学地质学等应运而生。一般地说,不存在作为支配关系的物理定律,当用数学方法研究这些领域中的定量关系时,数学建模就成为首要的、关键的步骤和这些学科发展与应用的基础。在这些领域里建立不同类型、不同方法、不同深浅程度模型的余地相当大,为数学建模提供了广阔的新天地。马克思说过,一门科学只有成功地运用数学时,才
算达到了完善的地步。展望21世纪,数学必将大踏步地进入所有学科,数学建模将迎来蓬勃发展的新时期。
随着科学技术的飞速发展,人们越来越认识到数学科学的重要性:数学的思考方式具有根本的重要性,数学为组织和构造知识提供了方法,将它用于技术时能使科学家和工程师生产出系统的、能复制的、且可以传播的知识??数学科学对于经济竞争是必不可少的,数学科学是一种关键性的、普遍的、可实行的技术。
在当今高科技与计算机技术日新月异且日益普及的社会里,高新技术的发展离不开数学的支持,没有良好的数学素养已无法实现工程技术的创新与突破。因此,如何在数学教育的过程中培养人们的数学素养,让人们学会用数学的知识与方法去处理实际问题,值得数学工作者的思考。大学生数学建模活动及全国大学生数学建模竞赛正是在这种形势下开展并发展起来的,其目的在于激励学生学习数学的积极性,提高学生建立数学模型和运用计算机技术解决实际问题的综合能力,拓宽学生的知识面,培养创造精神及合作意识,推动大学数学教学体系、教学内容和教学方法的改革[2]。宁波理工学院在近几年开展了这项极富意义的活动,组队参加了全国大学生数学建模竞赛。为了更好地组织、指导此项活动,让更多的学生投入此项活动并从中受益,我们根据组织与指导的实践,对数学建模活动的作用与实施谈一些认识,以期起到深化数学教学改革、推动课程建设的作用。1数学建模竞赛活动的作用与意义数学建模是一个将实际问题用数学的语言、方法,去近似刻画、建立相应数学模型并加以解决的过程。为检验大学生数学建模的能力,我国在每年9月底举办一届大学生数学建模竞赛。参加过数学建模活动的教师与学生普遍反映,数学建模活动既丰富了学生的课外生活,又培养了学生各方面的能力,同时也促进了大学数学教学的改革。通过数学建模活动,教师与学生对数学的作用有了进一步的认识。
激发学生学习数学的兴趣现今大学工科数学教学普遍存在内容多、学时少的情况,为此很多教师采取了牺牲应用、偏重理论讲解以完成教学进度的方法,使学生对数学的重要性认识不够,影响了学生学习数学的兴趣,很多学生进入专业课学习阶段才感觉到数学的重要,但为时已晚。数学建模活动及竞赛的题目是社会、经济和生产实践中经过适当简化的实际问题,体现了数学应用的广泛性;学生参与数学建模及竞赛活动,感受到了数学的生机与活力,感受到了对自己各方面能力的促进,从而激发起他们学习数学的兴趣。1.2培养学生多方面的能力(1)培养综合应用数学知识及方法进行分析、推理、计算的能力。由于数学建模的过程是反复应用数学知识与方法对实际问题进行分析、推理与计算,以得出实际问题的最佳数学模型及模型最优解的过程,
因而学生明显感到自己这一方面的能力在具体的建模过程
中得到了较大提高。
当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子,也就是数学模型,然后用通过计算得到的模型结果来解释实际问题,并接受实际的检验。这个建立数学模型的全过程就称为数学建模。近半个多世纪以来,随着计算机技术的迅速发展,数学的应用不仅在工程技术、自然科学等领域发挥着越来越重要的作用,而且以空前的广度和深度向经济、金融、生物、医学、环境、地质、人口、交通等新的领域渗透,所谓数学技术已经成为当代高新技术的重要组成部分。
不论是用数学方法在科技和生产领域解决哪类实际问题,还是与其它学科相结合形成交叉学科,首要的和关键的一步是建立研究对象的数学模型,并加以计算求解。数学建模和计算机技术在知识经济时代的作用可谓是如虎添翼。
数学是研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和各种各样的应用问题紧密相关的。数学的特点不仅在于概念的抽象性、逻辑的严密性,结论的明确性和体系的完整性,而且在于它应用的广泛性,进入20世纪以来,随着科学技术的迅速发展和计算机的日益普及,人们对各种问题的要求越来越精确,使得数学的应用越来越广泛和深入,特别是在即将进入21世纪的知识经济时代,数学科学的地位会发生巨大的变化,它正在从国或经济和科技的后备走到了前沿。经济发展的全球化、计算机的迅猛发展,数理论与方法的不断扩充使得数学已经成为当代高科技的一个重要组成部分和思想库,数学已经成为一种能够普遍实施的技术。培养学生应用数学的意识和能力已经成为数学教学的一个重要方面。
数学建模的意义
数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并"解决"实际问题的一种强有力的数学手段。某种意义下论证数学科学的重要性是件相当容易的事,我们可以举出许多例子(从日常生活到尖端技术)说明数学为什么是必不可少的,但是我们常常会发现听众不会反对你所讲的例子,但他们中许多人还是认为数学没多大用处甚至干脆说数学没有用。这不仅仅是由于数学的语言比较抽象不容易掌握,还有教育中的问题以及其它的原因,这正是需要我们认真调查、研究深入的问题,也是在数学教育改革深入开展中必须解决的问题。国际数学界、科学界、工程技术界、政府领导人也正在思考数学的重要性究竟表现在哪里的问题,从而做出正确的决策。我认为以下一些看法是值得深思的。19世纪著名德国数学家h.g.grassmann曾说过:“数学除了锻炼敏锐的理解力、发现真理以外,还有另一个训练全面考虑科学系统的头脑的开发功能。”前面所提及的《数学科学,技术,经济竞争力》中指出:"数学的思考方式具有根本的重要性。简言之,数学为组织和构造知识提供了方法,以至于当用于技术时就能使科学家和工程师们生产出系统的、能复制的,并且是可以传播的知识。分析、设计、建模、模拟(仿真)及其具体实施就可能变成高效加结构良好的活动。"因此"在经济竞争中数学科学是必不可少的,数学科学是一种关键的、普遍的、能够实行的技术"。用这样的观点来看待和分析问题,我们就会发现虽然我们教给学生的数学知识、思想、方法不能说是没有用的,但是面对即使是学过很多高等数学而反映学过数学用不上的情况来说,抛开各种客观原因不谈(我们甚至可以举出几百个数学系的毕业生毕业后去从事工农业生产,以至商业取得巨大的经济效益来进行辩解、辩论,但这只是一种学究式的辩论,并不一定有助于改进我们的教学,从而使我们培养出来的人才真正具有竞争力),我们在教学上是存在问题的:我们的教学越来越形式、抽象。只见定义、定理、推导、证明、计算而越来越少讲与我们周围的世界以至日常生活的密切联系,而通过
具体的数学教学达到开发全面考虑科学系统的头脑的功能就更差了。这是一个国际性的问题,其解决有赖于我们对计算机革命引起的深刻的变化的认识,也许我们现在的教学方法对培养少数数学家还是可以的,但对于培养绝大多数的非数学专业的人才来说确实是大有改进潜力的。
分清现行数学教学中的优、缺点,坚持并发扬优点,采取切实有效的措施克服缺点正是当今世界范围的数学教育改革的关键。数学建模的内容进入研究生、大学、中学的教学内容正反映了这样一种努力。数学建模就是用数学语言描述实际现象的过程。这里的实际现象既包涵具体的自然现象比如自由落体现象,也包涵抽象的现象比如顾客对某种商品所取的价值倾向。这里的描述不但包括外在形态,内在机制的描述,也包括预测,试验和解释实际现象等内容。
我们也可以这样直观地理解这个概念:数学建模是一个让纯粹数学家(指只懂数学不懂数学在实际中的应用的数学家)变成物理学家,生物学家,经济学家甚至心理学家等等的过程。
数学模型一般是实际事物的一种数学简化。它常常是以某种意义上接近实际事物的抽象形式存在的,但它和真实的事物有着本质的区别。要描述一个实际现象可以有很多种方式,比如录音,录像,比喻,传言等等。为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。应用数学去解决各类实际问题时,建立数学模型是十分关键的一步,同时也是十分困
难的一步。建立教学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程。要通过调查、收集数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分析和解决问题。这就需要深厚扎实的数学基础,敏锐的洞察力和想象力,对实际问题的浓厚兴趣和广博的知识面。数学建模是联系数学与实际问题的桥梁,是数学在各个领械广泛应用的媒介,是数学科学技术转化的主要途径,数学建模在科学技术发展中的重要作用越来越受到数学界和工程界的普遍重视,它已成为现代科技工作者必备的重要能力之。为了适应科学技术发展的需要和培养高质量、高层次科技人才,数学建模已经在大学教育中逐步开展,国内外越来越多的大学正在进行数学建模课程的教学和参加开放性的数学建模竞赛,将数学建模教学和竞
赛作为高等院校的教学改革和培养高层次的科技人才的个重要方面,现在许多院校正在将数学建模与教学改革相结合,努力探索更有效的数学建模教学法和培养面向21世纪的人才的新思路,与我国高校的其它数学类课程相比,数学建模具有难度大、涉及面广、形式灵活,对教师和学生要求高等特点,数学建模的教学本身是一个不断探索、不断创新、不断完善和提高的过程。为了改变过去以教师为中心、以课堂讲授为主、以知识传授为主的传统教学模式,数学建模课程指导思想是:以实验室为基础、以学生为中心、以问题为主线、以培养能力为目标来组织教学工作。通过教学使学生了解利用数学理论和方法去分析和解决问题的全过程,提高他们分析问题和解决问题的能力;提高他们学习数学的兴趣和应用数学的意识与能力,使他们在以后的工作中能经常性地想到用数学去解决问题,提高他们尽量利用计算机软件及当代高新科技成果的意识,能将数学、计算机有机地结合起来去解决实际问题。数学建模以学生为主,教师利用一些事先设计好问题启发,引导学生主动查阅文献资料和学习新知识,鼓励学生积极开展讨论和辩论,培养学生主动探索,努力进取的学风,培养学生从事科研工作的初步能力,培养学生团结协作的精神、形成一个生动活泼的环境和气氛,教学过程的重点是创造一个环境去诱导学生的学习欲望、培养他们的自学能力,增强他们的数学素质和创新能力,提高他们的数举素质,强调的是获取新知识的能力,是解决问题的过程,而不是知识与结果。接受参加数学建模竞赛赛前培训的同学大都需要学习诸如数理统计、最优化、图论、微分方程、计算方法、神经网络、层次分析法、模糊数学,数学软件包的使用等等“短课程”(或讲座),用的学时不多,多数是启发性的讲一些基本的概念和方法,主要是靠同学们自己去学,充分调动同学们的积极性,充分发挥同学们的潜能。培训中广泛地采用的讨论班方式,同学自己报告、讨论、辩论,教师主要起质疑、答疑、辅导的作用,竞赛中一定要使用计算机及相应的软件,如Mathematica,Matlab,Lingo,Spas,Mapple,甚至排版软件等。
(二)、数学模型(MathematicalModel)是一种模拟,是用数学符号、数学式子、程序、图形等对实际课题本质属性的抽象而又简洁的刻划,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略。数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识。这种应用知识从实际课题中抽象、提炼出数学模型的过程就称为数学建模(MathematicalModeling)。
不论是用数学方法在科技和生产领域解决哪类实际问题,还是与其它学科相结合形成交叉学科,首要的和关键的一步是建立研究对象的数学模型,并加以计算求解。数学建模和计算机技术在知识经济时代的作用可谓是如虎添翼。
(三)、数学是研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和各种各样的应用问题紧密相关的。数学的特点不仅在于概念的抽象性、逻辑的严密性,结论的明确性和体系的完整性,而且在于它应用的广泛性,自从20世纪以来,随着科学技术的迅速发展和计算机的日益普及,人们对各种问题的要求越来越精确,使得数学的应用越来越广泛和深入,特别是在21世纪这个知识经济时代,数学科学的地位会发生巨大的变化,它正在从国家经济和科技的后备走到了前沿。经济发展的全球化、计算机的迅猛发展,数理论与方法的不断扩充使得数学已经成为当代高科技的一个重要组成部分和思想库,
应用数学与数学建模篇三:数学建模与经济学的关系
数学模型与经济学的关系
摘要:随着科学技术的迅速发展,数学模型这个词汇越来越多的出现在现代人的生产、工作和社会活动中。每一门学科要想成为一门科学,首先要经过数学的推理验证,构建相应的数学模型,经济学也不例外。本文主要阐述了最优价格模型在经济学中的指导意义,经济数学模型是研究经济学的重要工具,在经济应用中占有重要的地位。文章从经济数学模型的内涵、构建经济数学模型的方法、遵循的基本原则以及所要注意的问题进行了简要分析和论述。
数学与经济学息息相关,可以说每一项经济学的研究、决策,都离不开数学的应用。特别是自从诺贝尔经济学奖创设以来,利用数学工具来分析经济问题得到的理论成果层出不穷,经济学中使用数学方法的趋势越来越明显。当代西方经济学认为,经济学的基本方法是分析经济变量之间的函数关系,建立经济模型,从中引申出经济原则和理论,进行预测、决策和监控。在经济领域,数学的运用首要的问题是实用性和实践性问题,即能否用所建立的模型去概括某一经济现象或说明某一经济问题。因而,数学模型分析已成为现代经济学研究的基本趋向,经济数学模型在研究许多特定的经济问题时具有重要的不可替代的作用,在经济学日益计量化、定量分析的今天,数学模型方法显得愈来愈重要。关键字:经济学数学模型最优价格
一.引言
科学与生产生活和数学模型的关系变得越来越紧密。工程师要建立数学模型,用这个模型对控制装置作出相应的设计和计算。城市规划工作者需要建立一个包括人口、经济、交通、环境等大系统的数学模型。建立数学模型是沟通摆在面前的实际问题与工作者掌握的数学工具之间联系的一座必不可少的桥梁。将数学方
法应用到实际问题中时,往往首先是把这个问题的内在规律用数字、图表或者公式、符号表示出来,然后经过数学的处理得到定量的结果,以供人们作分析、预报、决策或者控制,这个过程实际上就是一个建立数学模型的过程。
数学和经济的联系是十分紧密的,而对数学的应用往往要通过数学模型。无论现在还是以后的学习和工作,建立数学模型都将是一个解决问题的重要的方法。
二.最优价格模型
经济问题往往通过转化为数学模型来分析。数学是研究现实世界的数量关系和空间形式的科学。它具有高度的抽象性,在经济上应用的范围很广。经济范畴和经济过程同样是质和量的统一。在对生产方式以及与之相适应的生产关系进行质的分析的前提下,对反映生产方式以及与之相适应的生产关系的经济范畴和经济过程进行量的分析,将有助于认识的深化,有助于理论的应用。从这一方面来说,马克思主义经济学所提示的原理和规律,不少都有可能用数学语言来表达,用数学模型来表示。马克思自己就曾经想运用数学方法来说明经济危机的规律性。马克思提出了运用数学方法的前提条件:首先,材料必须是足够的;其次,材料必须是经过检验的。
数学模型为西方经济学家提供了方便。西方经济学家在他们的研究中大量地运用数学模型,他们所用的数学方法几乎遍及纯数学的各主要分支。不可否认,数理分析的方法要比单纯文字说明、推理更方便、更精确,有时也更能说服人。大量的数学符号和算式推导,使经济过程和现象的表述较为简洁、清晰和直观。现在的数理经济学,金融数学,计量经济学等学科的蓬勃发展和其广阔的发展前景都说明了经济是必须要和数学结合起来研究的,而且经济学的研究史是一个从定性分析研究向定量研究转变的过程,并最终是严密的定量研究的趋势,而在定量研
究过程中,是否能准确地建立数学模型关系着该领域研究的成功与否。在经济学界和数学界都赫赫有名的数学和经济学大师——约翰纳什,通过数学模型把日常生活中生动的经济问题分析并深化研究,总结出了著名的纳什均衡[1]。这个著名的经济论断成为经济学界坚实的理论基石,为以后研究更个领域的博弈问题提供了理论基础,可以说正是数学和经济的完美结合才创造除了世界宝贵的财富,经济和数学密不可分的关系也就不言而喻了。
下面的最优价格模型是我们经济学中比较经典的一个数学模型,从中也可以看出数学模型的建立对经济学有很重要的意义。
1.最优价格如何建立模型[2]
2.分析问题
我们要简练一个最有的的价格模型,首先要深入了解实际经济问题以及与问题有关的背景知识,对现实经济现象及原始背景进行细致观察和周密调查,以获取大量的数据资料,并对数据进行加工分析、分组整理。
3.模型基本假设假设
最优价格,简单的说就是使商家或企业获得最大利润的产品的价格。对于最优价格的问题,应该是每个企业关注的。如果一个厂长有权根据产品成本和销售情况制定商品价格的话,他当然会寻求能使工厂利润最大的所谓最优价格。本文所讨论的最优价格模型,是指在产销平衡状态下的模型,这里的产销平衡是指工厂产品的产量等于市场上的销售量。为了模型的更加合理性,这里假设产品的销售量依赖于产品的价格,产品的成本与产品的产量也是相关联的。
4.模型建立
利润是销售收入与生产支出之差。假设每件产品售价为p,成本为q,销售量为x(与产量相等),总收入与总支出分别是I和C,则可以得到:
I=px(1)
C=qx(2)
另外,我们知道在市场竞争的情况下销售量x依赖于价格p,因此销售量应该是价格的函数,记作:
x=f(p)(3)
这里f称为需求函数,是p的减函数。
我们再考虑成本与产品数量的关系。通常情况下,成本是随着产品的数量逐渐降低的,因此可以认为产品的成本是产品数量的函数。记作:
q=Q(x)(4)
其中,我们把Q叫做成本函数,是x的减函数。这样,x和q都可以由p来确定。可以得到销售收入和生产支出C都是价格p的函数,设利润为U,则可以表示为:
U(p)=I(p)-C(p)(5)
其中,I(p)=px=pf(p),C(p)=qx=Q(x)x=Q(f(p))f(p)。使利润U达到最大的价格就是最优价格。设最优价格为p*,那么可以得到当dU/dp=0
时p的值即为p*。即有
dU/dp=dU/dp
当p=p*时:我们把dI/dp称为边际收入(价格变动一个单位时收入的改变量),dC/dp称为边际支出(价格变动一个单位时的支出的改变量)。上式表明,最大利润是在边际收入等于边际支出时达到的。
为了得到进一步的结果,本文假设出需求函数和成本函数的具体形式。设需求函数是简单的线性函数:
f(p)=a-bpab>0–bp(6)
其中,a可以理解为这种产品免费供应(p=0)社会的需求量,称为“绝对需求量”。b表示价格上涨一个单位时销售量下降的幅度(当然也是价格下跌一个单位时销售量上升的幅度),它反映市场需求对价格的敏感程度。
接下来,设成本函数为:
Q(x)=m+1/(tx+n)(其中m,t,n>0)
(7)其中,m表示产品的最底成本,t表示产品数量增加或减少带来的幅度,n调节常数,即产品的最大成本为(m+1/n)。
5.模型求解
将(1)~(3)和(6),(7)带入(4)式可得:
U(p)=I(p)–C(p)=pf(p)–Q(f(p))f(p)
=(a–bp)[p–m–1/(ta+n–tbp)](8)
用微分的方法可以求出使U(p)最大的最优价格。由dU/dp=0式和(8)式可以得到:
btp–(2btn+2abt+btm)p+(n+2atn+at+2abtm+2btmn)p–m(n+ta)–n=0(9)
这是一个关于p的三次方程,对于实际问题,当得到a、b、m、n、t的数值带到(9)式中,再用相应的数学方法求出p*。
6.结果分析
在实际的工作之中,a和b可以由价格p和销售量x的统计数据用最小二乘法拟合来确定。m和n实际上是已知的常数,t也是根据产量的多少可以得出的。对于(9)式的求解在有些时候可能不容易得到精确的数值,我们可以根据实际情况得到具有一定精度的近似值。
四.总结