大学本科毕业论文开题报告

时间:2020-10-30 作者:poter
后台-系统-系统设置-扩展变量-(内容页告位1-手机版)

1、立题意义,主要研究内容及拟解决的关键性问题

2、论文主要研究内容:群的cayley图及其hamilton圈及路径的存在性问题,主要是对一些特殊和常用的群进行了归纳与总结.

3、立题意义:1.将高度抽象的群具体化,变成对应于群的结构的可见模型.2.本文在两个现代重要学科"群论"与"图论"之间建立了联系.3.本文还让我们对群的一些"老朋友"——循环群,两面体群,群的直积,生成元及其运算关系有了进一步的了解与复习.4.更重要的是,研究该问题会让你觉得趣味横生.

4、解决的关键性问题:将一些特殊的群的图形表示及其hamilton圈及路径的存在性问题进行了归纳与总结,试着从图形中证明我们已熟悉的定理并推出一些结果.对hamilton群中hamilton路径及cayley({(a,0),(b,0),(e,1)}:q4+zm)中hamilton圈的存在性,对图cayley({(a,0),(b,0),(e,1)}:q8+zm)中hamilton圈的存在性进行了证明.总结一下有两个生成元组成的无向cayley图及其相关性质,特别的对s6的cayley图及其hamilton圈的存在性进行了讨论.

5、立论根据及研究创新之处:在本文中引进了群的cayley图的概念并对一些常用的群进行研究及归纳.研究群的cayley图会使我们对抽象的群有形象化的认识,观察一些特殊群cayley图的优良性质.研究该题不仅可以对循环群,两面体群,群的直积,生成元及其运算关系有了进一步的了解与复习,而且觉得十分有趣.

研究创新之处就是将特殊群的一些cayley图表示出来,并且通过图来观测群与群之间的关系(比如群的直积),对一些特殊群的hamilton圈及路径的存在性进行证明与推广.比如hamilton群,q4+zm,q8+zm,s6的cayley图及其hamilton圈的存在性.

6、考文献目录

1蒋长浩,图论与网络流,北京,中国林业出版社,XX.7

2i.grossmanw.magnus,groupsandtheirgraphs

3igorpakandradosradoicic,hamiltonpathsincayleygraphs

7、究工作总体安排及具体进度

2月初——2月底将林老师给与我的材料进行研究

3月初——3月中旬查阅相关资料

3月下旬定下论文方向,并开始定稿.

4月初定好初稿,在林老师的指导下进行修改和纠正.

5月上旬论文完成.

后台-系统-系统设置-扩展变量-(内容页告位2-手机版)
声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:123456789@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。
后台-系统-系统设置-扩展变量-(内容页告位3-手机版)