本论文是一篇竹子方面毕业论文,关于gocheck文检测试题相关本科毕业论文范文。免费优秀的关于竹子及工业工程及建筑材料方面论文范文资料,适合竹子论文写作的大学硕士及本科毕业论文开题报告范文和学术职称论文参考文献下载。
*E-Material
*MetalAlloy
*Organic&,Polymer
*CompositeMaterials
*PracticalApplication
*TechNews&,NewTech
MCanxixunInformationandNewsService
Contents
TechNews&,NewTech(技术前沿)3
Researchersdevelopsimpleproceduretoobtainnanosizedgraphene3
研究人员开发简单程序获得纳米字素3
Simple,lowcostlasertechniqueimprovesnanomaterials4
简单的低酿成激光技术改善纳米材料6
MetalAlloy(金属合金)7
Chinatoshutoutdatedcopper,steel,ferroalloycapacitybyendSep:MIIT7
中国将在九月末之前停止不合时宜的铜,钢,铁合金产能7
Discoveryiskeytometalwearinslidingparts8
金属在滑动部位磨损的关键发现10
CompositeMaterials(复合材料)11
AudiAnnouncesCompositeSpringsToSaveWeight,EnteringProductionLaterThisYear11
奥迪宣布使用复合弹簧以减轻车重,今年下半年将投产12
AOC'sR058DesignedforCarbonReinforcedComposites13
AOCR058开发出碳增强型复合材料13
DymaxLaunchLight-CurableColouredAdhesives14
制造商可使用Dymax胶粘剂公司的新"包含"技术,可轻松进行硫化以及硫化后粘结层检查.14
PracticalApplication(实际应用)15
"Nanopixels"promisethin,flexiblehigh-resdisplays15
"纳米像素"有望实现轻薄,灵活的高分辨率显示器16
Buildingupbamboo17
建造竹子机构19
Chemistdevelopsx-rayvisionforqualityassurance20
化学家开发X射线透视保证产品质量22
Organic&,Polymer(有机高分子材料)24
Companyconvertscoconuthuskfibersintomaterialsforcarsandhomes24
公司将椰壳纤维转化为制造汽车和房屋的材料26
HemlockSemiconductorsalesrecoveronimprovingpolysiliconshipments27
HemlockSemiconductor销售复苏27
Solarenergy:Acarbon-basedmaterialgivessolarsteam-poweraboost28
太阳能:碳基材料推动太阳能蒸汽动力的发展29
E-Material(电子材料)30
GadgetWatch:PadFonenovelasphone-tablethybrid30
作为手机-平板混合体的PadFone31
Futureelectronicsmaydependonlasers,notquartz32
未来的电子产品可能会依赖于激光,而不是石英33
Towardultimatelightefficiencyonthecheap34
便宜的极致光效率35
RECSilicon'ssalesincreasefollowinghigherQ2demandandASPs36
RECSilicon销售增长37
TechNews&,NewTech(技术前沿)
Researchersdevelopsimpleproceduretoobtainnanosizedgraphene
ThejournalAngewandteChemiehasrecentlypublishedaworkbyCiQUSresearchers(UniversityofSantiagodeCompostela,Spain)incollaborationwithIBMResearch-Zurich(Switzerland),whichdescribesanextremelysimplemethodtoobtainhighqualitynanographenesfromeasilyavailableanicpounds.
Grapheneisconsideredanuniquematerial,whichisleadingtotheemergenceofapletelynewtechnology.Oneofthebiggestchallengesinthisnewfieldisthedevelopmentofmethodologiesforthepreparationofthismaterialwithnanometricsizeandhighquality:iftheresearchersgetaperfectcontrolovertheirsizeandgeometry,theycouldexplorenewapplicationsforhigh-performanceelectronicdevices.ThemethoddiscoveredbyCiQUSresearchersallowstoobtainwell-definednanographenesinone-potfromperylene,averymonanicpound.
Thismethodisbasedonthereactivityofagroupofmoleculesnamedarynes,whichcanactas"molecularglue"topastegraphenefragmentstogether.Theclover-shapednanographenesobtainedinthisresearchweredepositedonultrathininsulatingfilms,andimagedwithatomicresolutionbyatomicforcemicroscopy(AFM).Thepreparationofthesematerialswithdifferentsizeandshapescouldbecrucialtobuildgraphene-basedelectroniccircuits,molecularmachineryand/orsinglemoleculeelectronicdevices.
Theresearchwork,ledbyProf.DiegoPea,isacontributionoftheresearchgroupCOMMO,partofCiQUS,andincludestheparticipationofProf.EnriqueGuitián,Prof.DoloresPérezandthePhDstudentSaraCollazos.ThisCOMMOgroupispioneeronthesynthesisofnanosizedgraphenesfollowingbottom-upapproachesthroughchemicalmethodsinsolution.TheIBMGroupisaspecialistintheuseofAFMwithatomicresolutionandinthisworkDr.LeoGross,Dr.GerhardMeyerandPhDstudentBrunoSchulerwereinvolved.
BothgroupshavealreadycollaboratedandpublishedpreviousresultsinchemistryscientificjournalsasScience(2016),andcurrentlytheytakepartoftheLargeEuropeanProjectPAMS(PlanarAtomicandMolecularScaleDevices),withatotalbudgetover9millionEuros.PAMSmainobjectiveistodevelopelectronicdevicesofnanometric-scalesize,inordertogettheextrememiniaturizationoftheequipmentusedininformationtechnologyandmunication.
Source:CiQUS
研究人员开发简单程序获得纳米字素
苏黎世(瑞士),它描述了一个非常简单的方法,从容易获得的有机化合物获得高质量的纳米石墨烯.应用化学杂志》最近发表了CiQUS研究员(圣地亚哥德孔波斯特拉大学,西班牙)与IBM研究中心合作的研究成果.
石墨烯被认为是一种独特的材料,这是导致一个完全新的技术的出现.其中一个在这个新领域的最大挑战是这种材料具有纳米尺寸和高品质的制剂的发展:如果研究人员得到一个完美的控制自己的尺寸和几何形状,他们可以探索高性能电子新应用设备.CiQUS研究人员发现的方法将允许从一种很常见的有机化合物,二萘嵌苯用一步法获得定义明确的纳米石墨烯.
此方法是基于一组命名arynes的分子,它可以充当"分子胶水"来将石墨烯片段粘贴在一起.在本研究中得到的三叶草形的纳米石墨烯沉积在超薄绝缘膜上,并且在原子力显微镜(AFM)的原子级的分辨率成像.这些材料的不同的大小和形状的制备可能对建立基于石墨烯的电子电路,分子机械和/或单分子的电子设备是至关重要的,.
这项研究工作是由迭戈尼亚教授领导的,是CiQUS的一部分,研究小组COMMO的贡献,包括教授恩里克归田,多洛雷斯佩雷斯教授和博士生SaraCollazos
竹子方面论文范文参考文献,与gocheck文检测试题相关毕业论文参考文献资料: