本论文是一篇方程类论文格式模板,关于初中数学复习题目全国,初中数学复习题目答案相关毕业论文格式范文。免费优秀的关于方程及实数及商品方面论文范文资料,适合方程论文写作的大学硕士及本科毕业论文开题报告范文和学术职称论文参考文献下载。
2007年初中数学竞赛模拟试题(1)
一,选择题(每小题6分,共30分)
1.方程的所有整数解的个数是()个
(A)2(B)3(C)4(D)5
2.设△ABC的面积为1,D是边AB上一点,且.若在边AC上取一点E,
使四边形DECB的面积为,则的值为()
(A)(B)(C)(D)
3.如图所示,半圆O的直径在梯形ABCD的底边AB上,且与其余三边BC,CD,DA相切,若BC等于2,DA等于3,则AB的长()
(A)等于4(B)等于5(C)等于6(D)不能确定
4.在直角坐标系中,纵,横坐标都是整数的点,称为整点.设为整数,当直线与直线的交点为整点时,的值可以取()个
(A)8个(B)9个(C)7个(D)6个
5.世界杯足球赛小组赛,每个小组4个队进行单循环比赛,每场比赛胜队得3分,败队得0分,平局时两队各得1分.小组赛完后,总积分最高的2个队出线进入下轮比赛.如果总积分相同,还有按净胜球数排序.一个队要保证出线,这个队至少要积()分.
(A)5(B)6(C)7(D)8
二,填空题(每小题6分,共30分)
6.当分别等于,,,,,,,,,,,时,计算代数式的值,将所得的结果相加,其和等于.
7.关于的不等式>,的解是<,,则关于的不等式<,0的解为.
8.方程的两根都是非零整数,且,则等于.
9.如图所示,四边形ADEF为正方形,ABCD为等腰直角三角形,D在BC边上,△ABC的面积等于98,BD:DC等于2:5.则正方形ADEF的面积等于.
10.设有个数,,等,,它们每个数的值只能取0,1,-2三个数中的一个,且等,等,则等的值是.
三,解答题(每小题15分,共60分)
11.如图,凸五边形ABCDE中,已知S△ABC等于1,且EC∥AB,AD∥BC,BE∥CD,
CA∥DE,DB∥EA.试求五边形ABCDE的面积.
12.在正实数范围内,只存在一个数是关于的方程的解,求实数的取值范围.
13.如图,一次函数的图象过点P(2,3),交x轴的正半轴与A,交y轴的正半轴与B,求△AOB面积的最小值.
14.预计用1500元购买甲商品个,乙商品个,不料甲商品每个涨价1.5元,乙商品每个涨价1元,尽管购买甲商品的个数比预定数减少10个,总金额仍多用29元.又若甲商品每个只涨价1元,并且购买甲商品的数量只比预定数少5个,那么甲,乙两商品支付的总金额是1563.5元.
(1)求,的关系式,
(2)若预计购买甲商品的个数的2倍与预计购买乙商品的个数的和大于205,但小于210,求,的值.
参考答案
一,选择题
1.C2.B3.B4.A5.C
二,填空题
6.67.8.-2029.11610.-125
三,解答题
11.∵BE∥CD,CA∥DE,DB∥EA,EC∥AB,AD∥BC,
∴S△BCD等于S△CDE等于S△DEA等于S△EAB等于S△ACB等于S△ACF等于1.
设S△AEF等于,则S△DEF等于,
又△AEF的边AF与△DEF的边DF上的高相等,
所以,,而△DEF∽△ACF,则有
.
整理解得.
故SABCDE等于3S△ABC+S△AEF等于.
12.原方程可化为,①
(1)当△等于0时,,满足条件,
(2)若是方程①的根,得,.此时方程①的另一个根为,故原方程也只有一根,
(3)当方程①有异号实根时,,得,此时原方程也只有一个正实数根,
(4)当方程①有一个根为0时,,另一个根为,此时原方程也只有一个正实根.
综上所述,满足条件的的取值范围是或或.
有关论文范文主题研究: | 关于方程的文章 | 大学生适用: | 专升本毕业论文、电大论文 |
---|---|---|---|
相关参考文献下载数量: | 45 | 写作解决问题: | 如何写 |
毕业论文开题报告: | 论文提纲、论文前言 | 职称论文适用: | 论文发表、初级职称 |
所属大学生专业类别: | 如何写 | 论文题目推荐度: | 经典题目 |
13.解:设一次函数解析式为,则,得,令得,则OA等于.
令得,则OA等于.
所以,三角形AOB面积的最小值为12.
14.(1)设预计购买甲,乙商品的单价分别为元和元,则原计划是
,①
由甲商品单价上涨1.5元,乙商品单价上涨1元,并且甲商品减少10个的情形,得
.②
再由甲商品单价上涨1元,而数量比预计数少5个,乙商品单价上涨仍是1元的情形,得
,③
由①,②,③得
④-⑤×2并化简,得
.
(2)依题意,有205<,<,210及,54<,<,,
由是整数,得,从而得.
答:(1),的关系,
(2)预计购买甲商品76个,乙商品55个.
2007年初中数学竞赛模拟试题(2)
一,选择题(每小题6分,共30分)
1.已知,,则等于()
(A)4(B)0(C)2(D)-2
2.方程的实根的个数为()
(A)1(B)2(C)3(D)4
3.已知梯形ABCD中,AD∥BC,对角线AC,BD交于O,△AOD的面积为4,
△BOC的面积为9,则梯形ABCD的面积为()
(A)21(B)22(C)25(D)26
4.已知⊙O1与⊙O2是平面上相切的半径均为1的两个圆,则在这个平面上有()个半径为3的圆与它们都相切.
(A)2(B)4(C)5(D)6
5.一个商人用元(是正整数)买来了台(为质数)电视机,其中有两台以成本的一半价钱卖给某个慈善机构,其余的电视机在商店出售,每台盈利500元,结果该商人获得利润为5500元,则的最小值是()
(A)11(B)13(C)17(D)19
二,填空题(每小题6分,共30分)
6.已知等腰△ABC内接于半径为5cm的⊙O,若底边BC等于8cm,则△ABC的面积为.
7.△ABC的三边长,,满足,,则△ABC的周长等于.
8.若表示不超过的最大整数,且满足方程,则等于.
9.若直线与直线的交点坐标是(,),则的值是.
10.抛物线向左平移3个单位,再向上平移两个单位,得抛物线C,则C关于轴对称的抛物线解析式是.
三,解答题(每小题15分,共60分)
11.如图所示,在△ABC中,AC等于7,BC等于4,D为AB的中点,E为AC边上一点,且∠AED等于90°+∠C,求CE的长.
12.某公交公司停车场内有15辆车,从上午6时开始发车(6时整第一辆车开出),以后每隔6分钟再开出一辆.第一辆车开出3分钟后有一辆车进场,以后每隔8分钟有一辆车进场,进场的车在原有的15辆车后依次再出车.问到几点时,停车场内第一次出现无车辆
13.已知一个两位数,其十位与个位数字分别为,,二次函数的图象与轴交于不同的两点A,B,顶点为C,且S△ABC≤1.
(1)求的取值范围,(2)求出所有这样的两位数.
14.已知是正整数,且与都是完全平方数.是否存在,使得是质数如果存在,请求出所有的值,如果不存在,请说明理由.
参考答案
一,选择题
1.B2.A3.C4.D5.C
二,填空题
6.8cm2或32cm27.148.9.201610.
三,解答题
11.作BF∥DE交AC于F,作∠ACB的平分线交AB于G,交BF于H.
则∠AED等于∠AFB等于∠CHF+∠C.
因为∠AED等于90°+∠C,所以∠CHF等于90°等于∠CHB.
又∠FCH等于∠BCH,CH等于CH.
∴△FCH≌△BCH.
∴CF等于CB等于4,
∴AF等于AC-CF等于7-4等于3.
∵AD等于DB,BF∥DE,
∴AE等于EF等于1.5,
∴CE等于5.5.
12.设从6时起x分钟时停车场内第一次出现无车辆,此时总共出车S辆,进场车y辆,则
∴,解得.
∵S为正整数,∴S等于56,即到第56辆车开出后,停车场内第一次出现无车
辆.此时,6+等于11.5(时)
答:到11时30分时,停车场内第一次出现无车辆.
13.(1)设A(,0),B(,0),(),则,是方程
的两个不同的实根,所以
,,.
又(表示点C的纵坐标),所以
S△ABC等于,
从而,.
故0<,.
(2)由(1)知,1,2,3,4.
因为被4除余数为0或1,故被4除余数也是0或1,从而1,或4.这两个方程中符合题意的整数解有
故所有两位数为23,65,34,86.
14.设,,其中,都是正整数,则
.
若,则不是质数.
若,则,于是
,矛盾.
综上所述,不存在正整数,使得是质数.
2007年初中数学竞赛模拟试题(3)
一,选择题(每小题6分,共30分)
1.在一个凸边形的纸板上切下一个三角形后,剩下的是一个内角和为2160°的多边形,则的值为()
(A)只能为12(B)只能为13(C)只能为14(D)以上都不对
2.已知关于的方程有两个不同的实数根,则实数的取值范围是()
(A)等于0(B)≥0(C)等于-2(D)>,0或等于-2
3.若正实数,满足,则的最小值为()
(A)-7(B)0(C)9(D)18
4.如图,在△ABC中,∠C等于Rt∠,CD⊥AB,下列结论:(1)DC·AB等于AC·BC,
(2),(3),(4)AC+BC>,CD+AB.
其中正确的个数是()
(A)4(B)3(C)2(D)1
5.设是正整数,0<,≤1,在△ABC中,如果
方程类论文范文,与初中数学复习题目全国,初中数学复习题目答案相关论文格式模板参考文献资料: