本论文是一篇参考文献类有关本科毕业论文,关于学报社科类稿件投稿模板相关学年毕业论文范文。免费优秀的关于参考文献及斜体及页码方面论文范文资料,适合参考文献论文写作的大学硕士及本科毕业论文开题报告范文和学术职称论文参考文献下载。
3DModelRetrievalMethodBasedonAffinityPropagationClustering
(题目中实词首字母大写,四号粗体)
LinLin*,XiaolongXie,andFangyuChen
(名前姓后,两个名字之间用连字符连接,小四号斜体)
(SchoolofMechatronicsEngineering,HarbinInstituteofTechnology,Harbin150001,China)
(单位采用小单位前,大单位后,若有多个单位需要编号,作者姓名右上角加上相应的编号,六号正体)
Abstract:Inordertoimprovetheaccuracyandefficiencyof3Dmodelretrieval,themethodbasedonaffinitypropagationclusteringalgorithmisproposed.Firstly,projectionray-basedmethodisproposedtoimprovethefeatureextractionefficiencyof3Dmodels.Basedontherelationshipbetweenmodelanditsprojection,theintersectionin3Dspaceistransformedintointersectionin2Dspace,whichreducesthenumberofintersectionandimprovestheefficiencyoftheextractionalgorithm.Infeatureextraction,multi-layerspheresmethodisanalyzed.Thetwo-layerspheresmethodmakesthefeaturevectormoreaccurateandimprovesretrievalprecision.Secondly,Semi-supervisedAffinityPropagation(S-AP)clusteringisutilizedbecauseitcanbeappliedtodifferentclusterstructures.TheS-APalgorithmisadoptedtofindthecentermodelsandthenthecentermodelcollectionisbuilt.Duringretrievalprocess,thecollectionisutilizedtoclassifythequerymodelintocorrespondingmodelbaseandthenthemostsimilarmodelisretrievedinthemodelbase.Finally,75samplemodelsfromPrincetonlibraryareselectedtodotheexperimentandthen36modelsareusedforretrievaltest.Theresultsvalidatethattheproposedmethodoutperformstheoriginalmethodandtheretrievalprecisionandrecallratiosareimprovedeffectively.
(摘 要四要素:目的,过程和方法,结果,结论,小五号)
Keywords:featureextraction,projectray-basedmethod,affinitypropagationclustering,3Dmodelretrieval
(关 键 词3~8个,小五号)
CLCNumber:TP391.7(中图分类号必须有,小五号)
Introduction(一级标题从引言部分开始编号,以下以此类推,四号粗体)
WiththedevelopmentandwideapplicationofCAD/CAMtechnology,thenumberof3Dmodelsgrowsgreatly.Howtoretrievethedesired3Dmodelfromthemassmodelbaseefficientlyandtousethemforre-designbeesanurgentdemand.Whendesigning3Dmodelforanewproduct,thedesignersoftenneedtoretrievesimilarmodelsandrevisethemandthiswillimprovethedesignefficiency.Ifthenumberof3Dmodelissmall,itiseasytofindthesuitable3Dmodel,butifthenumberof3Dmodelsislarge,itisdifficulttofindthedesiredmodelonlybythedesigner'smemoryinashorttime.Sotheputerisrequiredtospeedupthedesignprocess.Inaddition,inotherareaswhichneedtoprocessalargenumberof3Dgeometryinformation,3Dretrievaltechnologyalsohasthewideapplication.
Featureextractionof3Dmodelisthemostimportantpartofretrievaltechnology.Featureextractionisextractingthecharacteristicdescriptorsfromthe3Dmodelandformingafeaturevector,whichcanbeutilizedtodistinguish3Dmodels.Thesimilaritybetweentwomodelscanbecalculatedbasedonthefeaturevectors,andthenthemostsimilar3Dmodelisretrievedfromthemodelbases.Thealgorithmsof3Dmodelfeatureextractioncanbedividedintothefollowingcategories[1-3]:thealgorithmsbasedonthegeometricinformation,thealgorithmsbasedonthesummomentofthespatialandfrequencydomainandthealgorithmsbasedontopologicalrelationships.Theray-basedmethod[4]belongingtothegeometryinformationmethodhasbeenwidelyusedandmanyfeatureextractionalgorithmsarederivedfromit.However,duetothelowefficiencyofthealgorithmanditsapplicationlimitationsonthesomeissues,itshouldbeimprovedinpractice.Inordertoimprovetheefficiencyofray-basedmethod,theprojectionray-basedmethodisproposedinthispaper,whichreducestheintersectioncalculationoftriangularfacetsandrays.
Theprocessof3Dmodelretrievaliscalculatingandparingthesimilaritybetweenthefeaturevectorsof3Dmodels.Supposingthereareafeaturevectorspaceandtwofeaturevectorsand,thesimilaritycanbecalculatedbyusingthefollowingmethods:
1)statisticaldistance:
(1)
Minkowski-formdistance():
(2)
If,theabsolutedistanceis:
(3)
If,theEuclideandistanceis:
(4)
Accordingtotheaboveexpressions,thelarge-scalemodelbaseandhighdimensionoffeaturevectorwillleadtoahighputationalplexityof3Dretrieval.Inordertolimittheretrievalscopeandimprovetheefficiency,theclusteralgorithmisappliedinthepapertofindtherepresentativemodelsfromthemodelbaseandtheyareusedtoclassifythequerymodelintothecorrectcluster.Thentheretrievalisexecutedonlyincluster,soitcanimprovetheefficiency.
K-meansclustering[5-6]isthemostwidelyappliedmethod,anditcandealwithlarge-scaledatawithfastiterationspeed.ButK-meansalgorithmissensitivetoinitialclustercentersandeasytofallintothelocalminimum.Thereforeitisrequiredtorunmanytimeswiththedifferentinitializationtofindthebestclusteringresults.However,thisstrategyiseffectiveonlywithasmallnumberofclustersandthebetterinitialization.
Supportvectormachinetechnology[7](SVM)haswideapplicationinthefieldofdataclassificationanditoverestheproblemsofhighdimensionandlocalminimum.However,SVMisasupervisedlearningalgorithmandalarge-scalequadraticprogramming.Astoamulti-classificationpr
参考文献类有关论文范文集,与学报社科类稿件投稿模板相关本科毕业论文参考文献资料: