参考文献类有关论文范文集,与学报社科类稿件投稿模板相关本科毕业论文

时间:2020-07-05 作者:admin
后台-系统-系统设置-扩展变量-(内容页告位1-手机版)

本论文是一篇参考文献类有关本科毕业论文,关于学报社科类稿件投稿模板相关学年毕业论文范文。免费优秀的关于参考文献及斜体及页码方面论文范文资料,适合参考文献论文写作的大学硕士及本科毕业论文开题报告范文和学术职称论文参考文献下载。

3DModelRetrievalMethodBasedonAffinityPropagationClustering

(题目中实词首字母大写,四号粗体)

LinLin*,XiaolongXie,andFangyuChen

(名前姓后,两个名字之间用连字符连接,小四号斜体)

(SchoolofMechatronicsEngineering,HarbinInstituteofTechnology,Harbin150001,China)

(单位采用小单位前,大单位后,若有多个单位需要编号,作者姓名右上角加上相应的编号,六号正体)

Abstract:Inordertoimprovetheaccuracyandefficiencyof3Dmodelretrieval,themethodbasedonaffinitypropagationclusteringalgorithmisproposed.Firstly,projectionray-basedmethodisproposedtoimprovethefeatureextractionefficiencyof3Dmodels.Basedontherelationshipbetweenmodelanditsprojection,theintersectionin3Dspaceistransformedintointersectionin2Dspace,whichreducesthenumberofintersectionandimprovestheefficiencyoftheextractionalgorithm.Infeatureextraction,multi-layerspheresmethodisanalyzed.Thetwo-layerspheresmethodmakesthefeaturevectormoreaccurateandimprovesretrievalprecision.Secondly,Semi-supervisedAffinityPropagation(S-AP)clusteringisutilizedbecauseitcanbeappliedtodifferentclusterstructures.TheS-APalgorithmisadoptedtofindthecentermodelsandthenthecentermodelcollectionisbuilt.Duringretrievalprocess,thecollectionisutilizedtoclassifythequerymodelintocorrespondingmodelbaseandthenthemostsimilarmodelisretrievedinthemodelbase.Finally,75samplemodelsfromPrincetonlibraryareselectedtodotheexperimentandthen36modelsareusedforretrievaltest.Theresultsvalidatethattheproposedmethodoutperformstheoriginalmethodandtheretrievalprecisionandrecallratiosareimprovedeffectively.

(摘 要四要素:目的,过程和方法,结果,结论,小五号)

Keywords:featureextraction,projectray-basedmethod,affinitypropagationclustering,3Dmodelretrieval

(关 键 词3~8个,小五号)

CLCNumber:TP391.7(中图分类号必须有,小五号)

Introduction(一级标题从引言部分开始编号,以下以此类推,四号粗体)

WiththedevelopmentandwideapplicationofCAD/CAMtechnology,thenumberof3Dmodelsgrowsgreatly.Howtoretrievethedesired3Dmodelfromthemassmodelbaseefficientlyandtousethemforre-designbeesanurgentdemand.Whendesigning3Dmodelforanewproduct,thedesignersoftenneedtoretrievesimilarmodelsandrevisethemandthiswillimprovethedesignefficiency.Ifthenumberof3Dmodelissmall,itiseasytofindthesuitable3Dmodel,butifthenumberof3Dmodelsislarge,itisdifficulttofindthedesiredmodelonlybythedesigner'smemoryinashorttime.Sotheputerisrequiredtospeedupthedesignprocess.Inaddition,inotherareaswhichneedtoprocessalargenumberof3Dgeometryinformation,3Dretrievaltechnologyalsohasthewideapplication.

Featureextractionof3Dmodelisthemostimportantpartofretrievaltechnology.Featureextractionisextractingthecharacteristicdescriptorsfromthe3Dmodelandformingafeaturevector,whichcanbeutilizedtodistinguish3Dmodels.Thesimilaritybetweentwomodelscanbecalculatedbasedonthefeaturevectors,andthenthemostsimilar3Dmodelisretrievedfromthemodelbases.Thealgorithmsof3Dmodelfeatureextractioncanbedividedintothefollowingcategories[1-3]:thealgorithmsbasedonthegeometricinformation,thealgorithmsbasedonthesummomentofthespatialandfrequencydomainandthealgorithmsbasedontopologicalrelationships.Theray-basedmethod[4]belongingtothegeometryinformationmethodhasbeenwidelyusedandmanyfeatureextractionalgorithmsarederivedfromit.However,duetothelowefficiencyofthealgorithmanditsapplicationlimitationsonthesomeissues,itshouldbeimprovedinpractice.Inordertoimprovetheefficiencyofray-basedmethod,theprojectionray-basedmethodisproposedinthispaper,whichreducestheintersectioncalculationoftriangularfacetsandrays.

Theprocessof3Dmodelretrievaliscalculatingandparingthesimilaritybetweenthefeaturevectorsof3Dmodels.Supposingthereareafeaturevectorspaceandtwofeaturevectorsand,thesimilaritycanbecalculatedbyusingthefollowingmethods:

1)statisticaldistance:

(1)

Minkowski-formdistance():

(2)

If,theabsolutedistanceis:

(3)

If,theEuclideandistanceis:

(4)

Accordingtotheaboveexpressions,thelarge-scalemodelbaseandhighdimensionoffeaturevectorwillleadtoahighputationalplexityof3Dretrieval.Inordertolimittheretrievalscopeandimprovetheefficiency,theclusteralgorithmisappliedinthepapertofindtherepresentativemodelsfromthemodelbaseandtheyareusedtoclassifythequerymodelintothecorrectcluster.Thentheretrievalisexecutedonlyincluster,soitcanimprovetheefficiency.

K-meansclustering[5-6]isthemostwidelyappliedmethod,anditcandealwithlarge-scaledatawithfastiterationspeed.ButK-meansalgorithmissensitivetoinitialclustercentersandeasytofallintothelocalminimum.Thereforeitisrequiredtorunmanytimeswiththedifferentinitializationtofindthebestclusteringresults.However,thisstrategyiseffectiveonlywithasmallnumberofclustersandthebetterinitialization.

Supportvectormachinetechnology[7](SVM)haswideapplicationinthefieldofdataclassificationanditoverestheproblemsofhighdimensionandlocalminimum.However,SVMisasupervisedlearningalgorithmandalarge-scalequadraticprogramming.Astoamulti-classificationpr

1 2 3 4 5 6

参考文献类有关论文范文集,与学报社科类稿件投稿模板相关本科毕业论文参考文献资料:

收入

如何写论文提要

怎么写好议论文

如何写议论文开头

写论文技巧

论文后记写什么

如何写sci论文

写数学论文

论文帮写

地理论文如何写

后台-系统-系统设置-扩展变量-(内容页告位2-手机版)
声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:123456789@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。
后台-系统-系统设置-扩展变量-(内容页告位3-手机版)